编程实现QDF和骨架粒子群算法(给出骨架粒子群算法的源代码)
时间: 2023-07-23 16:56:59 浏览: 63
逆置乱实现 两次 重点学习如果计算负数的情况
QDF(Quantum-behaved Differential Evolution)算法实现:
```python
import numpy as np
import random
# QDF算法的超参数
POPULATION_SIZE = 50
CROSSOVER_PROBABILITY = 0.5
SCALE_FACTOR = 0.5
# 目标函数,需要根据实际问题进行定义
def objective_function(x):
return np.sum(x**2)
# QDF算法
def QDF(max_iterations):
# 生成初始种群
population = np.random.uniform(low=-5.12, high=5.12, size=(POPULATION_SIZE, 30))
# 计算初始种群中每个个体的适应度值
fitness = np.array([objective_function(individual) for individual in population])
# 记录最优的个体和适应度值
best_individual = population[np.argmin(fitness)]
best_fitness = np.min(fitness)
# 迭代
for i in range(max_iterations):
# 生成新的种群
new_population = np.zeros_like(population)
for j in range(POPULATION_SIZE):
# 随机选择三个不同的个体
a, b, c = random.sample(range(POPULATION_SIZE), 3)
# 生成新的个体
trial = np.zeros(30)
for k in range(30):
if np.random.uniform() < CROSSOVER_PROBABILITY:
trial[k] = population[a, k] + SCALE_FACTOR * (population[b, k] - population[c, k])
else:
trial[k] = population[j, k]
# 计算新个体的适应度值
trial_fitness = objective_function(trial)
# 更新最优的个体和适应度值
if trial_fitness < best_fitness:
best_individual = trial
best_fitness = trial_fitness
# 选择更优的个体进入新的种群
if trial_fitness < fitness[j]:
new_population[j] = trial
else:
new_population[j] = population[j]
# 更新种群和适应度值
population = new_population
fitness = np.array([objective_function(individual) for individual in population])
# 返回最优的个体和适应度值
return best_individual, best_fitness
```
骨架粒子群算法实现:
```python
import numpy as np
import random
# 骨架粒子群算法的超参数
POPULATION_SIZE = 50
MAX_ITERATIONS = 100
W = 0.729
C1 = 1.49445
C2 = 1.49445
# 目标函数,需要根据实际问题进行定义
def objective_function(x):
return np.sum(x**2)
# 骨架粒子群算法
def Skeleton_Particle_Swarm_Optimization(max_iterations):
# 生成初始种群
population = np.random.uniform(low=-5.12, high=5.12, size=(POPULATION_SIZE, 30))
# 计算初始种群中每个个体的适应度值
fitness = np.array([objective_function(individual) for individual in population])
# 初始化个体的最优位置和最优适应度值
p_best = population.copy()
p_best_fitness = fitness.copy()
# 初始化全局最优位置和最优适应度值
g_best = population[np.argmin(fitness)]
g_best_fitness = np.min(fitness)
# 迭代
for i in range(max_iterations):
# 更新速度和位置
for j in range(POPULATION_SIZE):
r1 = np.random.uniform()
r2 = np.random.uniform()
velocity = W * population[j] + C1 * r1 * (p_best[j] - population[j]) + C2 * r2 * (g_best - population[j])
population[j] = population[j] + velocity
# 约束处理
population[j] = np.maximum(population[j], -5.12)
population[j] = np.minimum(population[j], 5.12)
# 计算新位置的适应度值
fitness = np.array([objective_function(individual) for individual in population])
# 更新个体的最优位置和最优适应度值
for j in range(POPULATION_SIZE):
if fitness[j] < p_best_fitness[j]:
p_best[j] = population[j]
p_best_fitness[j] = fitness[j]
# 更新全局最优位置和最优适应度值
if np.min(fitness) < g_best_fitness:
g_best = population[np.argmin(fitness)]
g_best_fitness = np.min(fitness)
# 返回全局最优位置和最优适应度值
return g_best, g_best_fitness
```
阅读全文