基于卷积神经网络的车牌识别matlab代码
时间: 2024-04-20 07:21:26 浏览: 116
卷积神经网络车牌识别.zip
基于卷积神经网络(Convolutional Neural Network, CNN)的车牌识别是一种常见的图像识别任务。下面是一个简单的基于CNN的车牌识别MATLAB代码示例:
```matlab
% 导入车牌图像数据集
imds = imageDatastore('车牌图像路径', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 划分训练集和测试集
[trainImgs, testImgs] = splitEachLabel(imds, 0.8, 'randomized');
% 定义CNN网络结构
layers = [
imageInputLayer([32 32 3])
convolution2dLayer(3, 32, 'Padding', 'same')
reluLayer()
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 64, 'Padding', 'same')
reluLayer()
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(128)
reluLayer()
fullyConnectedLayer(numClasses)
softmaxLayer()
classificationLayer()
];
% 设置训练参数
options = trainingOptions('sgdm', 'MaxEpochs', 20, 'InitialLearnRate', 0.001);
% 训练CNN模型
net = trainNetwork(trainImgs, layers, options);
% 在测试集上进行预测
predictedLabels = classify(net, testImgs);
% 计算准确率
accuracy = sum(predictedLabels == testImgs.Labels) / numel(testImgs.Labels);
disp(['准确率:' num2str(accuracy)]);
% 对单张图像进行预测
img = imread('待识别车牌图像路径');
img = imresize(img, [32 32]);
predictedLabel = classify(net, img);
disp(['预测结果:' char(predictedLabel)]);
```
请注意,上述代码仅为一个简单的示例,实际应用中可能需要根据具体情况进行调整和优化。此外,还需要准备一个包含车牌图像和对应标签的数据集,并将其存储在指定路径下。
阅读全文