bp神经网络 和lstm神经网络模型 代码基于pytorch
时间: 2023-07-08 07:42:01 浏览: 197
好的,非常感谢您的提问。以下是基于PyTorch实现BP神经网络和LSTM神经网络模型的代码示例:
BP神经网络模型代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义BP神经网络模型
class BPNet(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(BPNet, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.sigmoid(self.fc1(x))
x = torch.sigmoid(self.fc2(x))
return x
# 初始化模型
input_dim = 10
hidden_dim = 20
output_dim = 1
model = BPNet(input_dim, hidden_dim, output_dim)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
# 训练模型
for epoch in range(100):
# 前向传播计算预测值
y_pred = model(x_train)
# 计算损失
loss = criterion(y_pred, y_train)
# 反向传播更新模型参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印训练过程
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item()))
```
LSTM神经网络模型代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义LSTM神经网络模型
class LSTMNet(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTMNet, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out, _ = self.lstm(x)
out = self.fc(out[:, -1, :])
return out
# 初始化模型
input_dim = 10
hidden_dim = 20
output_dim = 1
model = LSTMNet(input_dim, hidden_dim, output_dim)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
# 训练模型
for epoch in range(100):
# 前向传播计算预测值
y_pred = model(x_train)
# 计算损失
loss = criterion(y_pred, y_train)
# 反向传播更新模型参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印训练过程
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item()))
```
以上是基于PyTorch实现BP神经网络和LSTM神经网络模型的代码示例,希望能对您有所帮助。
阅读全文