python中的sequential类
时间: 2023-10-23 18:17:15 浏览: 197
在PyTorch中,Sequential类是一种容器,它按照顺序将多个层(函数)组合到一起,形成一个模型。可以将Sequential类看作一个简单的堆叠层的方式,它可以方便地定义一个神经网络模型,不需要手动定义每一层的输入和输出。
Sequential类的实例化方式如下:
```python
import torch.nn as nn
model = nn.Sequential(
nn.Linear(784, 256), # 输入维度为784,输出维度为256的全连接层
nn.ReLU(), # ReLU激活函数
nn.Linear(256, 128), # 输入维度为256,输出维度为128的全连接层
nn.ReLU(), # ReLU激活函数
nn.Linear(128, 10), # 输入维度为128,输出维度为10的全连接层
nn.Softmax(dim=1) # Softmax激活函数,dim=1表示在第一维度上计算
)
```
上述代码定义了一个包含三个全连接层和两个激活函数的神经网络模型,其中第一层的输入维度为784,输出维度为256,第二层的输入维度为256,输出维度为128,第三层的输入维度为128,输出维度为10。第一个和第二个全连接层后面都跟着一个ReLU激活函数,最后一个全连接层后面跟着一个Softmax激活函数。
可以通过调用Sequential类的forward方法来计算模型的输出,如下所示:
```python
x = torch.randn(32, 784) # 生成一个32x784的张量作为输入
output = model(x) # 计算模型输出
```
其中,x是输入张量,output是模型的输出。
阅读全文
相关推荐

















