写一个用训练好的.xml模型测试图片的代码
时间: 2023-05-20 07:00:47 浏览: 201
以下是一个使用训练好的.xml模型测试图片的Python代码示例:
```python
import cv2
# 加载训练好的xml模型
face_cascade = cv2.CascadeClassifier('trained_model.xml')
# 读取测试图片
img = cv2.imread('test_image.jpg')
# 将图片转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 在灰度图像中检测人脸
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
# 在原始图像中标记人脸位置
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 显示标记后的图像
cv2.imshow('Detected Faces', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用OpenCV库中的CascadeClassifier类加载训练好的.xml模型,并使用detectMultiScale方法在灰度图像中检测人脸。最后在原始图像中标记人脸位置并显示标记后的图像。
相关问题
用python和opencv基于人脸检测+戴口罩分类识别方法,实现一个人脸佩戴口罩检测系统,最后通过OpenCV库运行一个无限循环程序,使用电脑的摄像头验证系统功能。其中人脸检测使用opencv的haarcascade_frontalface_default.xml,戴口罩分类识别模型用mask和without_mask两个数据集(mask数据集的图片格式为'序号-with-mask.jpg',without_mask数据集'序号-jpg')训练CNN模型,并给出包括模型训练在内的,完整的代码和算法思路解说。
算法思路解说:
1. 通过OpenCV库中的CascadeClassifier类加载已经训练好的haarcascade_frontalface_default.xml,进行人脸检测。
2. 将检测到的人脸区域进行裁剪,输入到CNN模型中进行分类,判断是否佩戴口罩。
3. 训练CNN模型时,先将mask和without_mask两个数据集按照一定比例划分为训练集和测试集,然后使用ImageDataGenerator类进行数据增强,包括旋转、翻转、缩放等操作,增加模型的鲁棒性。
4. 模型架构采用卷积层、池化层、全连接层等结构,最后使用softmax函数进行分类。
5. 对于测试集结果进行评估,计算准确率、召回率等指标,选择模型表现最好的参数进行模型保存。
6. 在实际应用中,通过OpenCV库中的VideoCapture类获取电脑摄像头的实时视频流,对每一帧进行人脸检测和口罩分类,将结果输出到视频流中。
代码实现:
1. 导入相关库
```python
import cv2
import numpy as np
from keras.models import load_model
```
2. 加载已经训练好的人脸检测模型和口罩分类模型
```python
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
model = load_model('mask_detection.h5')
```
3. 定义函数进行口罩分类
```python
def mask_detection(image):
# 缩放图像大小为100x100
image = cv2.resize(image, (100, 100))
# 对图像进行预处理,归一化像素值
image = np.array(image) / 255.0
# 添加一个维度,变为4D张量
image = np.expand_dims(image, axis=0)
# 预测分类结果,返回概率
prediction = model.predict(image)[0]
# 根据概率值确定分类结果
if prediction[0] > prediction[1]:
return 'mask'
else:
return 'without_mask'
```
4. 打开摄像头,进行检测和分类,并输出结果到视频流中
```python
# 打开摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取一帧图像
ret, frame = cap.read()
# 将图像转为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# 遍历每一个人脸区域
for (x, y, w, h) in faces:
# 裁剪人脸区域
face = frame[y:y+h, x:x+w]
# 进行口罩分类
mask_type = mask_detection(face)
# 绘制人脸区域和分类结果
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, mask_type, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# 显示处理后的图像
cv2.imshow('Mask Detection', frame)
# 按下q键退出程序
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
```
5. 训练口罩分类模型,代码如下:
```python
import os
import cv2
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator
# 定义数据集路径
train_dir = 'dataset/train/'
test_dir = 'dataset/test/'
# 定义图像大小和批次大小
image_size = 100
batch_size = 16
# 定义训练集和验证集的图像生成器
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
test_datagen = ImageDataGenerator(rescale=1./255)
# 生成训练集和验证集
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
# 定义模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_size, image_size, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(2, activation='softmax'))
# 编译模型
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
history = model.fit_generator(
train_generator,
epochs=50,
validation_data=test_generator
)
# 保存模型
model.save('mask_detection.h5')
```
我有标注好的xml格式数据集,帮我写个可以训练识别出人,球,鞋子这三类物体的目标检测代码,使用 EfficientNet-Lite0 模型进行训练
好的,这里提供一个使用 TensorFlow Object Detection API 进行目标检测的示例代码,使用的模型是 EfficientDet-Lite0。在这之前需要先安装 TensorFlow Object Detection API 和 EfficientDet-Lite0 模型。
```python
import tensorflow as tf
import numpy as np
import cv2
import os
# 定义类别
CLASSES = ['person', 'ball', 'shoe']
# 读取标注数据
def read_annotation(xml_path):
with open(xml_path, 'r') as f:
xml_str = f.read()
xml = tf.compat.v1.compat.v1.string_to_xml(xml_str)
boxes = []
labels = []
for obj in xml.findall('object'):
label = obj.find('name').text
if label not in CLASSES:
continue
xmin = int(obj.find('bndbox/xmin').text)
ymin = int(obj.find('bndbox/ymin').text)
xmax = int(obj.find('bndbox/xmax').text)
ymax = int(obj.find('bndbox/ymax').text)
boxes.append([xmin, ymin, xmax, ymax])
labels.append(CLASSES.index(label))
return np.array(boxes), np.array(labels)
# 定义数据集
class DetectionDataset(tf.keras.utils.Sequence):
def __init__(self, xml_dir, batch_size):
self.xml_files = [os.path.join(xml_dir, f) for f in os.listdir(xml_dir) if f.endswith('.xml')]
self.batch_size = batch_size
def __len__(self):
return len(self.xml_files) // self.batch_size
def __getitem__(self, idx):
batch_xml = self.xml_files[idx*self.batch_size:(idx+1)*self.batch_size]
batch_images = []
batch_boxes = []
batch_labels = []
for xml_path in batch_xml:
image_path = xml_path.replace('.xml', '.jpg')
image = cv2.imread(image_path)
boxes, labels = read_annotation(xml_path)
batch_images.append(image)
batch_boxes.append(boxes)
batch_labels.append(labels)
inputs = {
'image': np.array(batch_images)
}
outputs = {
'bbox': np.array(batch_boxes),
'label': np.array(batch_labels)
}
return inputs, outputs
# 定义模型
def build_model():
image_input = tf.keras.layers.Input(shape=(None, None, 3), name='image')
backbone = tf.keras.applications.EfficientNetLite0(include_top=False, weights='imagenet')
x = backbone(image_input)
x = tf.keras.layers.Conv2D(1280, kernel_size=1, padding='same', activation='relu')(x)
x = tf.keras.layers.Conv2D(256, kernel_size=1, padding='same', activation='relu')(x)
class_output = tf.keras.layers.Conv2D(len(CLASSES), kernel_size=1, padding='same', activation='softmax', name='class_output')(x)
bbox_output = tf.keras.layers.Conv2D(4, kernel_size=1, padding='same', name='bbox_output')(x)
model = tf.keras.models.Model(inputs=image_input, outputs=[class_output, bbox_output])
return model
# 训练模型
def train_model(xml_dir, epochs, steps_per_epoch, batch_size):
dataset = DetectionDataset(xml_dir, batch_size)
model = build_model()
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss=['sparse_categorical_crossentropy', 'mse'])
model.fit(dataset, epochs=epochs, steps_per_epoch=steps_per_epoch)
# 测试模型
def test_model(image_path, model_path):
model = tf.keras.models.load_model(model_path)
image = cv2.imread(image_path)
inputs = np.expand_dims(image, axis=0)
outputs = model.predict(inputs)
class_predictions = outputs[0][0]
bbox_predictions = outputs[1][0]
for i in range(len(CLASSES)):
class_prediction = class_predictions[..., i]
bbox_prediction = bbox_predictions[..., i]
class_indices = np.where(class_prediction > 0.5)
bboxes = bbox_prediction[class_indices]
for bbox in bboxes:
xmin, ymin, xmax, ymax = bbox
cv2.rectangle(image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 255, 0), 2)
cv2.putText(image, CLASSES[i], (int(xmin), int(ymin)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('result', image)
cv2.waitKey(0)
# 训练模型
train_model('path/to/xml/dir', epochs=10, steps_per_epoch=100, batch_size=8)
# 测试模型
test_model('path/to/image', 'path/to/model.h5')
```
其中,`read_annotation` 函数用于读取标注数据,`DetectionDataset` 类用于定义数据集,`build_model` 函数用于构建模型,`train_model` 函数用于训练模型,`test_model` 函数用于测试模型。在训练模型时,需要提供标注数据所在的目录,训练轮数,每轮训练步数和批次大小。在测试模型时,需要提供要测试的图片路径和训练好的模型路径。
阅读全文