grad-cam医学图像分割可视化代码
时间: 2023-09-10 11:15:23 浏览: 423
以下是利用Grad-CAM算法进行医学图像分割可视化的示例代码。代码使用的是PyTorch框架。
```python
import torch
import torch.nn.functional as F
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 定义Grad-CAM函数
def grad_cam(model, x, layer_name):
# 获取目标层的输出特征图和梯度
features_blobs = []
def hook_feature(module, input, output):
features_blobs.append(output.data.cpu().numpy())
net._modules.get(layer_name).register_forward_hook(hook_feature)
grad_blobs = []
def hook_grad(module, grad_in, grad_out):
grad_blobs.append(grad_out[0].cpu().numpy())
net._modules.get(layer_name).register_backward_hook(hook_grad)
# 运行模型并计算梯度
output = model(x)
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][np.argmax(output.data.cpu().numpy())] = 1
one_hot = torch.from_numpy(one_hot)
one_hot.requires_grad = True
one_hot = torch.sum(one_hot * output)
model.zero_grad()
one_hot.backward()
grad = grad_blobs[0]
feature = features_blobs[0]
weights = np.mean(grad, axis=(2, 3))[0, :]
cam = np.zeros(feature.shape[2:], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * feature[0, i, :, :]
cam = cv2.resize(cam, x.shape[2:])
cam = np.maximum(cam, 0)
heatmap = cam / np.max(cam)
return heatmap
# 读取图像
img = cv2.imread('test.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.show()
# 转换图像为Tensor,并进行预处理
img = cv2.resize(img, (224, 224))
img = np.float32(img) / 255
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0)
# 加载模型
model = torch.load('model.pth')
model.eval()
# 应用Grad-CAM算法
heatmap = grad_cam(model, img, 'features')
# 可视化结果
heatmap = cv2.resize(heatmap, (img.shape[3], img.shape[2]))
heatmap = np.uint8(heatmap * 255)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
result = cv2.addWeighted(img.squeeze().numpy().transpose(1, 2, 0), 0.5, heatmap, 0.5, 0)
plt.imshow(result)
plt.show()
```
其中,`model.pth`为已经训练好的模型文件,`test.jpg`为待处理的图像文件。需要根据具体情况进行修改。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)