C# 用TensorFlow.NET训练自己的物品分类模型的完整代码例程
时间: 2024-03-25 15:38:50 浏览: 226
以下是一个简单的 C# 示例,使用 TensorFlow.NET 库来训练和测试一个物品分类模型:
```csharp
using System;
using System.IO;
using Tensorflow;
using Tensorflow.Models.ObjectDetection;
using static Tensorflow.Binding;
namespace ObjectDetectionExample
{
class Program
{
static void Main(string[] args)
{
// 设置训练和测试数据集的路径
var trainImagePath = "path/to/train/images";
var trainAnnotationPath = "path/to/train/annotations";
var testImagePath = "path/to/test/images";
var testAnnotationPath = "path/to/test/annotations";
// 加载训练和测试数据集
var trainDataset = new ObjectDetectionDataset(trainImagePath, trainAnnotationPath);
var testDataset = new ObjectDetectionDataset(testImagePath, testAnnotationPath);
// 初始化模型
var model = new ObjectDetectionModel();
// 配置训练器
var optimizer = keras.optimizers.Adam(learning_rate: 0.001f);
var loss_fn = keras.losses.BinaryCrossentropy(from_logits: true);
var train_loss_metric = keras.metrics.Mean(name: "train_loss");
var train_accuracy_metric = keras.metrics.BinaryAccuracy(name: "train_accuracy");
// 训练模型
var epochs = 10;
var batch_size = 32;
var steps_per_epoch = trainDataset.Length / batch_size;
var validation_steps = testDataset.Length / batch_size;
for (int epoch = 0; epoch < epochs; epoch++)
{
Console.WriteLine($"Epoch {epoch + 1}/{epochs}");
foreach (var batch in trainDataset.GetBatches(batch_size))
{
var images = batch.Item1;
var labels = batch.Item2;
using (var tape = tf.GradientTape())
{
var logits = model(images, training: true);
var loss_value = loss_fn(labels, logits);
train_loss_metric.update_state(loss_value);
train_accuracy_metric.update_state(labels, logits);
var grads = tape.gradient(loss_value, model.trainable_weights);
optimizer.apply_gradients(zip(grads, model.trainable_weights));
}
}
Console.WriteLine($"Train loss: {train_loss_metric.result()}, Train accuracy: {train_accuracy_metric.result()}");
train_loss_metric.reset_states();
train_accuracy_metric.reset_states();
foreach (var batch in testDataset.GetBatches(batch_size))
{
var images = batch.Item1;
var labels = batch.Item2;
var logits = model(images, training: false);
var loss_value = loss_fn(labels, logits);
train_loss_metric.update_state(loss_value);
train_accuracy_metric.update_state(labels, logits);
}
Console.WriteLine($"Test loss: {train_loss_metric.result()}, Test accuracy: {train_accuracy_metric.result()}");
train_loss_metric.reset_states();
train_accuracy_metric.reset_states();
}
// 保存模型
var savePath = "path/to/save/model";
model.Save(savePath, save_format: "tf");
}
}
}
```
这个示例使用 TensorFlow.NET 库中的 `ObjectDetectionDataset` 类来加载训练和测试数据集。模型使用了 `ObjectDetectionModel` 类,这个类是一个简单的物品分类模型。在训练过程中,这个示例使用了 Adam 优化器和二元交叉熵损失函数,并统计了训练和测试的准确率和损失值。
在完成训练后,模型可以使用 `Save` 方法来保存到磁盘上。
阅读全文