使用python编写代码。要求:识别图片上的表格和文字,自动矫正并使用优化算法,提高准确率
时间: 2023-05-28 10:04:21 浏览: 109
这个任务涉及到多个领域,比如图像处理、OCR(光学字符识别)、优化算法等。以下是一个简单的代码示例,可以在一定程度上实现这个任务:
```
import cv2
import pytesseract
import numpy as np
# 读入图片
img = cv2.imread('table.jpg')
# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# 寻找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 找到表格轮廓
table_contour = None
max_area = 0
for contour in contours:
area = cv2.contourArea(contour)
if area > max_area:
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
if len(approx) == 4:
table_contour = approx
max_area = area
# 透视变换(矫正)
if table_contour is not None:
rect = cv2.minAreaRect(table_contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
width = int(rect[1][0])
height = int(rect[1][1])
src_pts = box.astype("float32")
dst_pts = np.array([[0, height - 1],
[0, 0],
[width - 1, 0],
[width -
阅读全文
相关推荐


















