# 导入数据data <- read.csv("pendigits.csv")# 将数据集分为训练集和测试集library(caret)set.seed(123)trainIndex <- createDataPartition(data$V17, p = .8, list = FALSE, times = 1)train <- data[trainIndex,]test <- data[-trainIndex,]# 距离判别分析模型library(klaR)lda <- train(V17 ~ ., method = "lda", data = train)ldaPred <- predict(lda, newdata = test)ldaMisclass <- mean(ldaPred$class != test$V17)print(paste("LDA误判率:", ldaMisclass))# Bayes判别分析模型bayes <- train(V17 ~ ., method = "nb", data = train)bayesPred <- predict(bayes, newdata = test)bayesMisclass <- mean(bayesPred$class != test$V17)print(paste("Bayes误判率:", bayesMisclass))# Fisher判别分析模型# 计算类内散度矩阵S <- lapply(split(train[,1:16], train$V17), function(x) cov(x))Sw <- Reduce("+", S)# 计算类间散度矩阵mu <- aggregate(train[, 1:16], by = list(train$V17), mean)m <- as.matrix(mu[,-1])n <- as.numeric(mu[,1])muall <- colMeans(train[,1:16])Sb <- t(m - muall) %*% diag(n) %*% (m - muall)# 计算Fisher判别函数fisher <- solve(Sw) %*% (t(m - muall) %*% diag(n) %*% muall)fisherPred <- predict(test[,1:16] %*% fisher, newdata = test)fisherMisclass <- mean(fisherPred != test$V17)print(paste("Fisher误判率:", fisherMisclass))报Error in library(caret) : 不存在叫‘caret’这个名字的程辑包错
时间: 2024-02-19 18:58:12 浏览: 144
回归-数据集
这段代码报错的原因可能是没有安装 `caret` 包。你可以尝试运行以下代码安装 `caret` 包:
```R
install.packages("caret")
```
如果已经安装了 `caret` 包,那么你可以尝试重新加载该包:
```R
library(caret)
```
如果还是报错,可以查看报错信息,看看是什么原因导致的。
阅读全文