鱼群算法tsp 的matlab代码
时间: 2024-04-02 16:29:48 浏览: 48
人工鱼群算法matlab开发代码
鱼群算法(Fish School Search)是一种基于鱼群行为的启发式优化算法,用于解决旅行商问题(TSP)。下面是一个简单的鱼群算法TSP的Matlab代码示例:
```matlab
% 鱼群算法TSP的Matlab代码示例
% 初始化参数
numFish = 50; % 鱼群数量
numIter = 100; % 迭代次数
alpha = 0.6; % 鱼的移动步长因子
beta = 0.08; % 鱼的视野范围因子
delta = 0.97; % 鱼的步长衰减因子
% 初始化城市坐标
cities = [0, 0; 1, 1; 2, 2; 3, 3; 4, 4];
% 计算城市之间的距离矩阵
numCities = size(cities, 1);
distMatrix = zeros(numCities, numCities);
for i = 1:numCities
for j = 1:numCities
distMatrix(i, j) = norm(cities(i, :) - cities(j, :));
end
end
% 初始化鱼群位置和最优路径
fishPos = zeros(numFish, numCities);
fishBestPos = zeros(numFish, numCities);
fishBestDist = zeros(numFish, 1);
% 初始化全局最优路径和距离
globalBestPos = zeros(1, numCities);
globalBestDist = Inf;
% 迭代优化
for iter = 1:numIter
% 更新鱼群位置
for i = 1:numFish
% 计算鱼的移动步长
stepSize = alpha * delta^(iter-1);
% 计算鱼的视野范围
viewRange = beta * delta^(iter-1);
% 在视野范围内选择最优路径
neighbors = find(distMatrix(i, :) <= viewRange);
[~, idx] = min(fishBestDist(neighbors));
bestNeighbor = neighbors(idx);
% 更新鱼的位置
fishPos(i, :) = fishPos(i, :) + stepSize * (fishBestPos(bestNeighbor, :) - fishPos(i, :));
% 计算当前路径长度
dist = 0;
for j = 1:numCities-1
dist = dist + distMatrix(fishPos(i, j), fishPos(i, j+1));
end
dist = dist + distMatrix(fishPos(i, numCities), fishPos(i, 1));
% 更新最优路径和距离
if dist < fishBestDist(i)
fishBestPos(i, :) = fishPos(i, :);
fishBestDist(i) = dist;
end
% 更新全局最优路径和距离
if dist < globalBestDist
globalBestPos = fishPos(i, :);
globalBestDist = dist;
end
end
end
% 输出结果
disp('最优路径:');
disp(globalBestPos);
disp('最优距离:');
disp(globalBestDist);
```
希望这个代码示例能够帮助到你。如果有任何问题,请随时提问。
阅读全文