pls原理beta3(1,:)=mu(n+1:end)-mu(1:n)./sig(1:n)*beta2([2:end],:).*sig(n+1:en
时间: 2023-05-18 22:00:24 浏览: 323
这是一个Matlab代码,主要是进行矩阵运算。其中,mu、sig、beta2都是向量或者矩阵,用于计算beta3矩阵的各个元素。mu(n 1:end)-mu(1:n)是一个n维向量,./sig(1:n)表示分别除以sig向量的前n个元素,再乘上beta2([2:end],:)的后n-1行,最后再乘上sig(n 1:end),得到一个大小为n x m的beta3矩阵,其中m是beta2矩阵的列数。总之,这个式子是在进行向量/矩阵的乘除运算,并用结果构建新的矩阵。
相关问题
帮我给每一行代码添加注释 class DeepKalmanFilter(nn.Module): def __init__(self, config): super(DeepKalmanFilter, self).__init__() self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) self.transition = Transition(config.z_dim, config.trans_hidden_dim) self.posterior = Posterior( config.z_dim, config.post_hidden_dim, config.obs_dim ) self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) self.config = config @staticmethod def reparametrization(mu, sig): return mu + torch.randn_like(sig) * sig @staticmethod def kl_div(mu0, sig0, mu1, sig1): return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) def loss(self, obs): time_step = obs.size(1) batch_size = obs.size(0) overshoot_len = self.config.overshooting kl = torch.Tensor([0]).to(self.config.device) reconstruction = torch.Tensor([0]).to(self.config.device) emit_sig = self.emit_log_sigma.exp() for s in range(self.config.sampling_num): z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) for t in range(time_step): trans_loc, trans_sig = self.transition(z_q_t) post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) z_q_t = self.reparametrization(post_loc, post_sig) emit_loc = self.emitter(z_q_t) reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig + self.emit_log_sigma * batch_size / 2).sum() if t > 0: over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) else: over_loc = trans_loc.unsqueeze(0) over_sig = trans_sig.unsqueeze(0) overshooting = self.reparametrization(over_loc, over_sig) kl = kl + self.kl_div(post_loc.expand_as(over_loc), post_sig.expand_as(over_sig), over_loc, over_sig) / min(t + 1, self.config.overshooting) reconstruction = reconstruction / self.config.sampling_num kl = kl / self.config.sampling_num return reconstruction, kl
答:class DeepKalmanFilter(nn.Module): # 定义深度Kalman滤波器类
def __init__(self, config): # 初始化
super(DeepKalmanFilter, self).__init__() # 调用父类构造函数
self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) # 实例化发射器
self.transition = Transition(config.z_dim, config.trans_hidden_dim) # 实例化转换器
self.posterior = Posterior(config.z_dim, config.post_hidden_dim, config.obs_dim) # 实例化后验概率
self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) # 设置参数z_q_0
self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) # 发射标准差参数
self.config = config # 配置参数 @staticmethod
def reparametrization(mu, sig): # 重置参数
return mu + torch.randn_like(sig) * sig # 根据均值和标准差重置参数 @staticmethod
def kl_div(mu0, sig0, mu1, sig1): # 计算KL散度
return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) # 计算KL散度 def loss(self, obs): # 损失函数
time_step = obs.size(1) # 观测序列的时间步数
batch_size = obs.size(0) # 批量大小
overshoot_len = self.config.overshooting # 超调量
kl = torch.Tensor([0]).to(self.config.device) # kl散度
reconstruction = torch.Tensor([0]).to(self.config.device) # 构建重构误差
emit_sig = self.emit_log_sigma.exp() # 发射标准差
for s in range(self.config.sampling_num): # 采样次数
z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) # 估计量初始化
for t in range(time_step): # 遍历每一时刻
trans_loc, trans_sig = self.transition(z_q_t) # 更新转换器
post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) # 更新后验概率
z_q_t = self.reparametrization(post_loc, post_sig) # 重新参数化
emit_loc = self.emitter(z_q_t) # 计算发射器
reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig +
self.emit_log_sigma * batch_size / 2).sum() # 计算重构误差
if t > 0: # 如果不是第一步
over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) # 计算超调量
over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) # 转换器的位置
over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) # 转换器的协方差
else: # 如果是第一步
over_loc = trans_loc.unsqueeze(0) # 转换器的位
p = length(ell); if nargin<5, max_kk = min(n,p)-1; end max_kk = min(max_kk,min(p,n)-1); if nargin<4, alpha = 0.5; end s_Wishart = KN_s_Wishart(alpha,beta); sigma_arr = zeros(1,max_kk); for kk=1:max_kk [mu_np sigma_np] = KN_mu_sigma(n,p-kk,beta); sig_hat_kk = KN_noiseEst(ell,n,kk); sigma_arr(kk) = sig_hat_kk; at_least_kk_signals = n * ell(kk) > sig_hat_kk * (mu_np + s_Wishart * sigma_np); if ~at_least_kk_signals, break, end end % for kk=1:max_kk K = kk-1; if K > 0 sigma_hat = sigma_arr(K); else sigma_hat = sum(ell(1:p)) / p; end
这段代码用来计算伪秩和噪声方差的估计。
首先,计算特征值的个数,即样本协方差矩阵的大小。
然后,如果未指定伪秩的最大值,则将其设置为样本数和特征值个数之间的较小值减1,确保伪秩的最大值不会超过样本数和特征值个数之间的较小值。
接着,如果未指定置信水平,则将其设置为0.5。
然后,使用置信水平和实部或虚部指示符计算s_Wishart。
接下来,初始化一个大小为max_kk的sigma_arr数组。
然后,对于每个kk,使用KN_mu_sigma函数计算mu_np和sigma_np,并使用KN_noiseEst函数计算sig_hat_kk,将其存储在sigma_arr数组中。接着,计算是否至少有kk个信号,即n * ell(kk) > sig_hat_kk * (mu_np + s_Wishart * sigma_np),如果不是,则退出循环。
最后,计算伪秩K,如果K大于0,则噪声方差的估计为sigma_arr(K),否则噪声方差的估计为特征值的平均值。
阅读全文