# Only process features from the past and present image = image[:, :self.receptive_field].contiguous()是什么意思?
时间: 2024-04-05 17:29:46 浏览: 137
这段代码出现在一个类中的某个方法中,其中的image是一个输入的特征矩阵。这段代码的作用是只处理过去和现在的特征。在这个方法中,self.receptive_field表示时间块的感受野,即该时间块中神经元对过去和现在的特征进行响应。因此,这段代码针对输入的特征矩阵,只选取前self.receptive_field个时间步的特征,剩下的特征将被忽略。这样做的目的是为了保证模型的输入只包含过去和现在的信息,避免未来信息的干扰,从而提高模型的准确性和可靠性。
相关问题
# temporal block self.receptive_field = self.cfg.TIME_RECEPTIVE_FIELD是什么意思?
这段代码是在一个类中定义的,其中self.cfg是指这个类的配置文件,而self.cfg.TIME_RECEPTIVE_FIELD是指这个配置文件中的一个参数,表示时间块(temporal block)的感受野(receptive field)。感受野是指神经元对输入的响应区域,因此这个参数可以影响时间块神经元对输入的响应程度和范围。
class TemporalModel(nn.Module): def __init__( self, in_channels, receptive_field, input_shape, start_out_channels=64, extra_in_channels=0, n_spatial_layers_between_temporal_layers=0, use_pyramid_pooling=True): super().__init__() self.receptive_field = receptive_field n_temporal_layers = receptive_field - 1 h, w = input_shape modules = [] block_in_channels = in_channels block_out_channels = start_out_channels for _ in range(n_temporal_layers): if use_pyramid_pooling: use_pyramid_pooling = True pool_sizes = [(2, h, w)] else: use_pyramid_pooling = False pool_sizes = None temporal = TemporalBlock( block_in_channels, block_out_channels, use_pyramid_pooling=use_pyramid_pooling, pool_sizes=pool_sizes, ) spatial = [ Bottleneck3D(block_out_channels, block_out_channels, kernel_size=(1, 3, 3)) for _ in range(n_spatial_layers_between_temporal_layers) ] temporal_spatial_layers = nn.Sequential(temporal, *spatial) modules.extend(temporal_spatial_layers) block_in_channels = block_out_channels block_out_channels += extra_in_channels self.out_channels = block_in_channels self.model = nn.Sequential(*modules) def forward(self, x): # Reshape input tensor to (batch, C, time, H, W) x = x.permute(0, 2, 1, 3, 4) x = self.model(x) x = x.permute(0, 2, 1, 3, 4).contiguous() return x[:, (self.receptive_field - 1):]是如何一步步前向传播的?
首先,输入张量x的形状为(batch_size, in_channels, sequence_length, height, width)。
然后,我们将x的维度从(sequence_length, batch_size, in_channels, height, width)改变为(batch_size, sequence_length, in_channels, height, width)。
接下来,我们将模型应用于输入,并将结果从(batch_size, sequence_length, out_channels, height, width)改变为(batch_size, out_channels, sequence_length, height, width),使其与输入张量的形状匹配。
最后,我们将输出张量的维度从(batch_size, out_channels, sequence_length, height, width)改变为(batch_size, sequence_length-receptive_field+1, out_channels, height, width)。其中,sequence_length-receptive_field+1是因为我们使用的是膨胀卷积,其输出序列长度会比输入短receptive_field-1,因此我们需要将其调整为对齐原始输入序列的长度。
阅读全文