mtcnn pytorch
时间: 2023-12-08 18:39:32 浏览: 132
MTCNN_pytorch
MTCNN是一种用于人脸检测的深度神经网络模型,它可以同时检测出一张图像中的多个人脸,并且对于不同大小和角度的人脸都有很好的适应性。PyTorch是一个基于Python的科学计算库,它支持GPU加速计算,可以实现高效的神经网络模型训练和推理。因此,PyTorch可以用来实现MTCNN模型。
具体实现步骤如下:
1. 准备训练数据,可以使用引用中提到的脚本生成训练数据。
2. 构建MTCNN模型,可以使用PyTorch提供的各种神经网络模块来实现,例如Conv2d、MaxPool2d、ReLU等。
3. 训练MTCNN模型,可以使用PyTorch提供的优化器和损失函数来进行模型训练。
4. 对测试图像进行人脸检测,可以使用训练好的MTCNN模型对测试图像进行前向传播,得到人脸框和关键点坐标。
下面是一个简单的MTCNN PyTorch实现的例子:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PNet(nn.Module):
def __init__(self):
super(PNet, self).__init__()
self.conv1 = nn.Conv2d(3, 10, kernel_size=3, stride=1, padding=1)
self.prelu1 = nn.PReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(10, 16, kernel_size=3, stride=1)
self.prelu2 = nn.PReLU()
self.conv3 = nn.Conv2d(16, 32, kernel_size=3, stride=1)
self.prelu3 = nn.PReLU()
self.conv4_1 = nn.Conv2d(32, 1, kernel_size=1, stride=1)
self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1, stride=1)
def forward(self, x):
x = self.conv1(x)
x = self.prelu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.prelu2(x)
x = self.conv3(x)
x = self.prelu3(x)
cls = F.sigmoid(self.conv4_1(x))
offset = self.conv4_2(x)
return cls, offset
class RNet(nn.Module):
def __init__(self):
super(RNet, self).__init__()
self.conv1 = nn.Conv2d(3, 28, kernel_size=3, stride=1)
self.prelu1 = nn.PReLU()
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(28, 48, kernel_size=3, stride=1)
self.prelu2 = nn.PReLU()
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(48, 64, kernel_size=2, stride=1)
self.prelu3 = nn.PReLU()
self.dense4 = nn.Linear(64 * 2 * 2, 128)
self.prelu4 = nn.PReLU()
self.dense5_1 = nn.Linear(128, 1)
self.dense5_2 = nn.Linear(128, 4)
def forward(self, x):
x = self.conv1(x)
x = self.prelu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.prelu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.prelu3(x)
x = x.view(x.size(0), -1)
x = self.dense4(x)
x = self.prelu4(x)
cls = F.sigmoid(self.dense5_1(x))
offset = self.dense5_2(x)
return cls, offset
class ONet(nn.Module):
def __init__(self):
super(ONet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.prelu1 = nn.PReLU()
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1)
self.prelu2 = nn.PReLU()
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.prelu3 = nn.PReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4 = nn.Conv2d(64, 128, kernel_size=2, stride=1)
self.prelu4 = nn.PReLU()
self.dense5 = nn.Linear(128 * 2 * 2, 256)
self.prelu5 = nn.PReLU()
self.dense6_1 = nn.Linear(256, 1)
self.dense6_2 = nn.Linear(256, 4)
self.dense6_3 = nn.Linear(256, 10)
def forward(self, x):
x = self.conv1(x)
x = self.prelu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.prelu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.prelu3(x)
x = self.pool3(x)
x = self.conv4(x)
x = self.prelu4(x)
x = x.view(x.size(0), -1)
x = self.dense5(x)
x = self.prelu5(x)
cls = F.sigmoid(self.dense6_1(x))
offset = self.dense6_2(x)
landmark = self.dense6_3(x)
return cls, offset, landmark
```
阅读全文