贪心算法单元最短路径:djikstra算法代码
时间: 2024-10-23 09:04:56 浏览: 40
贪心算法中的Dijkstra算法是一种用于寻找图中两点之间最短路径的经典算法,它适用于有向或无向、加权且边权重非负的图。以下是Dijkstra算法的基本步骤:
1. 初始化:将起始节点的距离设置为0,其他所有节点的距离设置为无穷大,优先队列中放入起始节点。
2. 查找邻居:从优先队列中取出当前距离最小的节点u,对于u的所有未访问邻接点v,计算u到v的新距离d(u, v) = d(u) + w(u, v),其中w(u, v)是边(u, v)的权重。
3. 更新:如果新距离比当前距离小,则更新v的距离,并将其加入优先队列。如果已经到达终点,算法结束;否则返回步骤2。
4. 结果:当优先队列为空或找到终点时,已知路径的节点集合包含了从起始节点到终点的最短路径。
下面是Dijkstra算法的一个Python伪代码版本:
```python
import heapq
def dijkstra(graph, start):
distances = {node: float('inf') for node in graph}
distances[start] = 0
heap = [(0, start)]
while heap:
current_distance, current_node = heapq.heappop(heap)
if current_distance > distances[current_node]:
continue # 如果当前距离更大,跳过此轮循环
for neighbor, weight in graph[current_node].items():
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(heap, (distance, neighbor))
return distances, [path[current_node] for path in reversed(distances.keys())]
# 示例:graph是一个字典,键为节点,值为邻接点及其权重
```
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)