基于Python的飞机模型路径规划
时间: 2023-12-25 19:07:31 浏览: 84
无人机路径规划与导航Python
5星 · 资源好评率100%
基于Python的飞机模型路径规划可以使用多种算法,其中最常见的是A*算法和Dijkstra算法。以下是一个简单的基于A*算法的示例代码,可以实现寻找无人机的最短路径。
```
import math
import heapq
# 定义节点类
class Node:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
self.g = 0
self.h = 0
self.f = 0
self.parent = None
# 定义估价函数
def heuristic(self, goal):
dx = abs(self.x - goal.x)
dy = abs(self.y - goal.y)
dz = abs(self.z - goal.z)
return math.sqrt(dx*dx + dy*dy + dz*dz)
# 定义比较运算符
def __lt__(self, other):
return self.f < other.f
# 定义A*算法函数
def astar(start, goal, obstacles):
open_set = []
closed_set = set()
heapq.heappush(open_set, start)
while len(open_set) > 0:
current = heapq.heappop(open_set)
if current == goal:
path = []
while current is not None:
path.append(current)
current = current.parent
return path[::-1]
closed_set.add(current)
for neighbor in get_neighbors(current, obstacles):
if neighbor in closed_set:
continue
tentative_g = current.g + current.heuristic(neighbor)
if neighbor not in open_set or tentative_g < neighbor.g:
neighbor.g = tentative_g
neighbor.h = neighbor.heuristic(goal)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current
if neighbor not in open_set:
heapq.heappush(open_set, neighbor)
def get_neighbors(node, obstacles):
neighbors = []
for dx in range(-1, 2):
for dy in range(-1, 2):
for dz in range(-1, 2):
if dx == 0 and dy == 0 and dz == 0:
continue
x = node.x + dx
y = node.y + dy
z = node.z + dz
if (x, y, z) in obstacles:
continue
neighbor = Node(x, y, z)
neighbors.append(neighbor)
return neighbors
# 示例用法
start = Node(0, 0, 0)
goal = Node(10, 10, 10)
obstacles = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}
path = astar(start, goal, obstacles)
print("Path:")
for node in path:
print(node.x, node.y, node.z)
```
在以上示例代码中,使用了一个名为Node的类来表示节点,其中包含节点的坐标(x、y、z)以及g、h和f值(g代表从起点到该节点的实际代价,h代表该节点到目标节点的估计代价,f=g+h)。使用堆来实现open set,确保按f值从小到大排序,从而选择f值最小的节点作为下一个扩展的节点。在get_neighbors函数中,生成每个节点周围的8个邻居节点,并排除掉障碍物。最后,通过调用astar函数,可以获取起点到终点的最短路径。
阅读全文