maml元学习pytorch代码
时间: 2023-07-09 12:18:15 浏览: 195
以下是使用PyTorch实现的MAML元学习的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class MAML(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MAML, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
def clone(self, device=None):
clone = MAML(self.input_size, self.hidden_size, self.output_size)
if device is not None:
clone.to(device)
clone.load_state_dict(self.state_dict())
return clone
class MetaLearner(nn.Module):
def __init__(self, model, lr):
super(MetaLearner, self).__init__()
self.model = model
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
def forward(self, x):
return self.model(x)
def meta_update(self, task_gradients):
for param, gradient in zip(self.model.parameters(), task_gradients):
param.grad = gradient
self.optimizer.step()
self.optimizer.zero_grad()
def train_task(model, data_loader, lr_inner, num_updates_inner):
model.train()
task_loss = 0.0
for i, (input, target) in enumerate(data_loader):
input = input.to(device)
target = target.to(device)
clone = model.clone(device)
meta_optimizer = MetaLearner(clone, lr_inner)
for j in range(num_updates_inner):
output = clone(input)
loss = nn.functional.mse_loss(output, target)
grad = torch.autograd.grad(loss, clone.parameters(), create_graph=True)
fast_weights = [param - lr_inner * g for param, g in zip(clone.parameters(), grad)]
clone.load_state_dict({name: param for name, param in zip(clone.state_dict(), fast_weights)})
output = clone(input)
loss = nn.functional.mse_loss(output, target)
task_loss += loss.item()
grad = torch.autograd.grad(loss, model.parameters())
task_gradients = [-lr_inner * g for g in grad]
meta_optimizer.meta_update(task_gradients)
return task_loss / len(data_loader)
# Example usage
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_size = 1
hidden_size = 20
output_size = 1
model = MAML(input_size, hidden_size, output_size)
model.to(device)
data_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(torch.randn(100, input_size), torch.randn(100, output_size)), batch_size=10, shuffle=True)
meta_optimizer = MetaLearner(model, lr=0.001)
for i in range(100):
task_loss = train_task(model, data_loader, lr_inner=0.01, num_updates_inner=5)
print('Task loss:', task_loss)
meta_optimizer.zero_grad()
task_gradients = torch.autograd.grad(task_loss, model.parameters())
meta_optimizer.meta_update(task_gradients)
```
在这个示例中,我们定义了两个类,MAML和MetaLearner。MAML是一个普通的神经网络,而MetaLearner包含了用于更新MAML的元优化器。在每个任务上,我们使用MAML的副本进行内部更新,然后使用元优化器来更新MAML的权重。在元学习的过程中,我们首先通过调用train_task函数来训练一个任务,然后通过调用meta_update函数来更新MAML的权重。
阅读全文