给出一个完整的元学习做故障分类的pytorch代码
时间: 2024-02-18 19:04:23 浏览: 128
好的,下面是一个使用元学习进行故障分类的 PyTorch 代码示例。该代码使用了 MAML (Model-Agnostic Meta-Learning) 算法来训练一个元模型,并使用 Mini-Imagenet 数据集进行测试。
首先,我们需要导入必要的库:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
```
然后,我们定义一些超参数:
```
num_classes = 5
num_shots = 5
num_ways = 5
num_tasks = 32
batch_size = 4
num_epochs = 5
learning_rate = 0.001
```
接下来,我们定义一个用于读取数据的函数:
```
def get_data_loader(data_path, num_shots, num_ways, batch_size):
transform = transforms.Compose([
transforms.Resize((84, 84)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
dataset = ImageFolder(data_path, transform)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
return data_loader
```
该函数使用 PyTorch 的 ImageFolder 类来读取数据,并将其转换为张量格式。然后,它使用 DataLoader 类来创建数据加载器。
接下来,我们定义一个用于训练元模型的函数:
```
def train(model, data_loader, num_shots, num_ways, optimizer):
model.train()
for _, batch in enumerate(data_loader):
support_set = batch[0][:num_shots * num_ways]
support_set = support_set.reshape(num_shots, num_ways, *support_set.shape[1:])
query_set = batch[0][num_shots * num_ways:]
query_set = query_set.reshape(query_set.shape[0], *query_set.shape[1:])
support_labels = torch.arange(num_ways).repeat(num_shots)
support_labels = support_labels.type(torch.LongTensor)
query_labels = batch[1][num_shots * num_ways:]
query_labels = query_labels.type(torch.LongTensor)
support_set = support_set.to(device)
query_set = query_set.to(device)
support_labels = support_labels.to(device)
query_labels = query_labels.to(device)
optimizer.zero_grad()
loss = model.get_loss(support_set, support_labels, query_set, query_labels)
loss.backward()
optimizer.step()
```
该函数使用给定的数据加载器来训练模型。在该函数中,我们首先从数据加载器中获取一个批次的数据,并将其转换为支持集和查询集。然后,我们为支持集生成标签,并为查询集获取真实标签。接下来,我们将数据和标签转换为张量格式,并将它们移动到 GPU 上(如果可用)。然后,我们使用模型的 get_loss 方法计算损失,并使用反向传播和优化器来更新模型的参数。
接下来,我们定义一个用于测试元模型的函数:
```
def test(model, data_loader, num_shots, num_ways):
model.eval()
num_correct = 0
num_total = 0
for _, batch in enumerate(data_loader):
support_set = batch[0][:num_shots * num_ways]
support_set = support_set.reshape(num_shots, num_ways, *support_set.shape[1:])
query_set = batch[0][num_shots * num_ways:]
query_set = query_set.reshape(query_set.shape[0], *query_set.shape[1:])
support_labels = torch.arange(num_ways).repeat(num_shots)
support_labels = support_labels.type(torch.LongTensor)
query_labels = batch[1][num_shots * num_ways:]
query_labels = query_labels.type(torch.LongTensor)
support_set = support_set.to(device)
query_set = query_set.to(device)
support_labels = support_labels.to(device)
query_labels = query_labels.to(device)
logits = model(support_set, support_labels, query_set)
preds = torch.argmax(logits, dim=1)
num_correct += torch.sum(preds == query_labels)
num_total += query_labels.shape[0]
accuracy = num_correct.float() / num_total
return accuracy.item()
```
该函数使用给定的数据加载器来评估模型的性能。在该函数中,我们首先从数据加载器中获取一个批次的数据,并将其转换为支持集和查询集。然后,我们为支持集生成标签,并为查询集获取真实标签。接下来,我们将数据和标签转换为张量格式,并将它们移动到 GPU 上(如果可用)。然后,我们使用模型来预测查询集的标签,并计算准确率。
接下来,我们定义一个元模型类:
```
class MetaModel(nn.Module):
def __init__(self, num_classes):
super(MetaModel, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten()
)
self.linear = nn.Sequential(
nn.Linear(64, num_classes)
)
def forward(self, support_set, support_labels, query_set):
support_features = self.conv(support_set)
support_features = support_features.reshape(support_features.shape[0], -1)
support_logits = self.linear(support_features)
support_loss = nn.CrossEntropyLoss()(support_logits, support_labels)
support_grads = torch.autograd.grad(support_loss, self.parameters())
support_grads = [grad.detach() for grad in support_grads]
fast_weights = self.update_params(support_grads, lr=learning_rate)
query_features = self.conv(query_set)
query_features = query_features.reshape(query_features.shape[0], -1)
query_logits = self.linear(query_features)
return query_logits
def update_params(self, grads, lr=learning_rate):
fast_weights = []
for i, param in enumerate(self.parameters()):
fast_weights.append(param - lr * grads[i])
return fast_weights
def get_loss(self, support_set, support_labels, query_set, query_labels):
logits = self(support_set, support_labels, query_set)
loss = nn.CrossEntropyLoss()(logits, query_labels)
return loss
```
该类继承自 nn.Module 类,并定义了一个卷积神经网络和一个全连接层。在 forward 方法中,我们首先使用支持集计算损失,并使用自动微分和反向传播来计算梯度。然后,我们使用梯度下降来更新模型的参数,并在查询集上计算预测。最后,我们返回查询集的预测结果。在 update_params 方法中,我们使用梯度下降来更新模型的参数。在 get_loss 方法中,我们使用支持集和查询集的数据来计算损失。
最后,我们定义一个主函数来训练和测试元模型:
```
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_path = '/path/to/mini-imagenet'
train_data_loader = get_data_loader(data_path, num_shots, num_ways, batch_size)
test_data_loader = get_data_loader(data_path, num_shots, num_ways, batch_size)
model = MetaModel(num_classes)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for task in range(num_tasks):
train(model, train_data_loader, num_shots, num_ways, optimizer)
accuracy = test(model, test_data_loader, num_shots, num_ways)
print(f'Epoch {epoch + 1}, Test Accuracy: {accuracy:.4f}')
```
在主函数中,我们首先检查 GPU 是否可用,并使用 get_data_loader 函数来读取数据。然后,我们创建一个元模型对象,并将其移动到 GPU 上(如果可用)。接下来,我们创建一个 Adam 优化器,并在每个 epoch 中使用 train 函数来训练模型。最后,我们使用 test 函数来测试模型,并打印出准确率。
这就是一个完整的元学习做故障分类的 PyTorch 代码示例。
阅读全文