from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X) X_s= scaler.transform(X) X_s[:3] from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=5000, max_features=int(X.shape[1] / 3), random_state=0) model.fit(X_s,y) model.score(X_s,y) pred = model.predict(X_s) plt.scatter(pred, y, alpha=0.6) w = np.linspace(min(pred), max(pred), 100) plt.plot(w, w) plt.xlabel('pred') plt.ylabel('y_test') plt.title('Comparison of GDP fitted value and true value') print(model.feature_importances_) sorted_index = model.feature_importances_.argsort() plt.barh(range(X.shape[1]), model.feature_importances_[sorted_index]) plt.yticks(np.arange(X.shape[1]),X.columns[sorted_index],fontsize=14) plt.xlabel('X Importance',fontsize=12) plt.ylabel('covariate X',fontsize=12) plt.title('Importance Ranking Plot of Covariate ',fontsize=15) plt.tight_layout()
时间: 2024-04-20 17:25:53 浏览: 137
这段代码是用于数据预处理和随机森林回归的模型训练和评估。首先,它使用`StandardScaler`对输入特征进行标准化处理。然后,使用`RandomForestRegressor`模型进行训练,设置了5000个决策树和每个决策树的最大特征数量为输入特征数的三分之一。接下来,使用训练好的模型对输入数据进行预测,并使用散点图可视化了预测值和真实值的对比。最后,打印了每个特征的重要性,并绘制了特征重要性的排序条形图。
请注意,这段代码可能需要引入一些必要的库和数据集,否则会出现错误。
相关问题
#数据标准化 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train_s = scaler.transform(X_train) X_val_s = scaler.transform(X_val) test_s=scaler.transform(test)
这段代码的作用是将数据进行标准化处理。首先从sklearn库导入StandardScaler类,然后创建一个StandardScaler对象scaler,并使用fit方法对训练数据X_train进行拟合,得到数据的均值和标准差。接下来分别使用transform方法对训练数据X_train,验证数据X_val和测试数据test进行标准化处理,使得它们的均值为0,方差为1。这个过程可以使得数据的分布更加符合标准正态分布,有利于提高模型的性能和稳定性。
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X)
这是一个用于数据预处理的代码片段,使用了Scikit-learn库中的StandardScaler类。这个类可以对数据进行标准化处理,使得数据的均值为0,标准差为1。这个代码片段中,首先创建了一个StandardScaler类的对象scaler,然后使用它的fit_transform方法对数据X进行标准化处理,得到一个新的标准化后的数据。标准化后的数据可以使得不同的特征之间具有可比性,提高模型的准确性。
阅读全文