提供一条matlab代码满足下面的问题:1912年的泰坦尼克号沉船灾难,这次灾难导致2224名船员和乘客中有1502人遇难。训练集提供了部分的乘客名单,包括性别、年龄等各种维度的特征以及是否幸存的标签,存在train.csv文件中。针对train.csv数据集,进行数据清理、数据变换、数据归约和特征选择,为泰坦尼克号生存预测做数据准备。
时间: 2024-04-05 22:32:24 浏览: 46
以下是一份基本的 MATLAB 代码,实现了对泰坦尼克号生存预测数据进行清理、变换、归约和特征选择的处理:
```
% 导入数据
data = readtable('train.csv');
% 数据清理
data = removevars(data, {'Name', 'Ticket', 'Cabin'});
data = rmmissing(data);
% 数据变换
data.Sex = categorical(data.Sex);
data.Embarked = categorical(data.Embarked);
% 数据归约
data.Age = fillmissing(data.Age, 'constant', 30);
% 特征选择
X = data(:,{'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'});
Y = data.Survived;
X = table2array(X);
X = [X, double(X(:,2)=='female'), double(X(:,7)=='C'), double(X(:,7)=='Q')];
X(:,2:3) = normalize(X(:,2:3));
% 训练模型
model = fitcsvm(X, Y);
% 预测结果
test_data = readtable('test.csv');
test_data = removevars(test_data, {'Name', 'Ticket', 'Cabin'});
test_data.Sex = categorical(test_data.Sex);
test_data.Embarked = categorical(test_data.Embarked);
test_data.Age = fillmissing(test_data.Age, 'constant', 30);
test_data.Fare = fillmissing(test_data.Fare, 'constant', median(data.Fare));
test_X = test_data(:,{'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'});
test_X = table2array(test_X);
test_X = [test_X, double(test_X(:,2)=='female'), double(test_X(:,7)=='C'), double(test_X(:,7)=='Q')];
test_X(:,2:3) = normalize(test_X(:,2:3));
test_Y = predict(model, test_X);
% 保存结果
result = table(test_data.PassengerId, test_Y);
result.Properties.VariableNames = {'PassengerId', 'Survived'};
writetable(result, 'result.csv');
```
上述代码包括以下步骤:
1. 使用 `readtable` 函数导入训练集数据,并移除不需要的变量(包括姓名、船票和客舱号码),使用 `rmmissing` 函数移除缺失值。
2. 对性别和登船港口进行分类变量转换。
3. 对年龄进行缺失值填充,并使用 `normalize` 函数对年龄和票价进行归约。
4. 对特征进行选择,包括船舱等级、性别、年龄、同行亲属人数、同行父母/儿女人数、票价和登船港口。
5. 使用 SVM 模型进行训练,并使用测试集数据进行预测。
6. 将预测结果保存到 `result.csv` 文件中。
需要注意的是,上述代码仅包含基本的数据处理和模型训练过程,实际应用中还需要对模型进行调参和评估,以提高预测准确率。
阅读全文