PWM方波如何转换为正弦波
时间: 2023-11-25 15:07:15 浏览: 645
将PWM方波转换为正弦波可以通过使用滤波器来实现。下面是一种基本的方法:
1. 生成PWM方波:使用微控制器或其他适当的电子器件生成所需频率和占空比的PWM方波信号。
2. 低通滤波器:将PWM方波信号输入到一个低通滤波器中,该滤波器可以去除方波信号中的高频成分,从而得到平滑的输出。
3. 滤波器选择:选择一个适当的滤波器类型,例如RC滤波器或者更高阶的滤波器,以便实现更好的滤波效果。滤波器的设计应考虑到所需的频率范围和幅度。
4. 滤波器参数选择:根据所需的输出正弦波的频率和幅度,选择合适的滤波器参数。例如,对于RC滤波器,可以通过调整电阻和电容值来控制输出信号的频率和幅度。
5. 输出正弦波:将滤波器的输出连接到负载或其他电路中,以获取转换后的正弦波信号。
请注意,这只是一种基本的方法,具体的实现可能会因应用环境和需求而有所不同。在实际应用中,可能需要进行更复杂的滤波和信号处理技术来实现更精确的正弦波转换。
相关问题
把方波过滤为正弦波
### 方波到正弦波的转换原理
在电子工程领域,将方波信号转换为正弦波信号是一项常见需求。实现这一目标的方法主要包括使用滤波器和其他电路设计技巧。
#### 使用低通滤波器进行转换
一种常用的技术是采用低通滤波器来消除高频分量并保留较低频率成分。由于方波由基频及其奇数倍谐波组成,当这些高次谐波被有效抑制时,输出接近理想的正弦波形态[^1]。
对于实际应用而言,选择合适的截止频率至关重要;通常该值应位于所需正弦波频率附近但略高于它,以便最大限度减少失真同时允许足够的带宽让主要信号通过[^2]。
```c
// STM32代码片段用于配置定时器生成PWM模拟方波
TIM_TimeBaseStructure.TIM_Period = 99; // 设置自动重装载寄存器周期值
TIM_TimeBaseStructure.TIM_Prescaler = 71; // 预分配系数设置, APB1=36MHz/72=500KHz
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInit(TIMx, &TIM_TimeBaseStructure);
```
此段C语言代码展示了如何基于STM32微控制器平台配置硬件资源以产生可调制宽度脉冲序列(PWM),进而形成近似于方波的形式作为输入给后续处理阶段如上述提到过的滤波单元。
#### 应用LC或RC网络构建滤波器
除了集成芯片解决方案外,还可以考虑利用离散元件搭建无源或有源形式的二阶巴特沃斯型LPFs (Low Pass Filters) 来完成同样的任务。具体来说:
- **无源 RC 滤波器**: 结构简单成本低廉,在不需要极高精度场合下适用;
- **有源 LC 或者多级 RC 组合结构**: 提供更好的性能和平坦度响应特性,适合更严格的应用环境。
总之,无论是选用现成模块还是自行焊接组装,都需要仔细考量参数匹配以及可能引入的新干扰因素影响最终效果。
基于stm32产生pwm波模拟输出方波,三角波和正弦波的程序编码
以下是基于STM32产生PWM波形的程序示例,其中包括方波、三角波和正弦波:
```c
#include "stm32f10x.h"
#define PI 3.1415926
#define SAMPLE_NUM 256
uint16_t sin_table[SAMPLE_NUM];
void TIM3_PWM_Init(uint16_t arr, uint16_t psc);
void TIM3_DAC_Init(uint16_t arr, uint16_t psc);
void TIM3_Sin_Init(uint16_t arr, uint16_t psc);
void Sin_Table_Init(void);
int main(void)
{
// 初始化系统时钟
SystemInit();
// 初始化PWM波形输出
TIM3_PWM_Init(1000 - 1, 72 - 1);
// 初始化DAC波形输出
TIM3_DAC_Init(1000 - 1, 72 - 1);
// 初始化正弦波表格
Sin_Table_Init();
// 初始化正弦波输出
TIM3_Sin_Init(1000 - 1, 72 - 1);
while (1)
{
}
}
// 初始化PWM波形输出
void TIM3_PWM_Init(uint16_t arr, uint16_t psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
// 使能TIM3和GPIOB时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
// 配置PB5为复用输出PWM波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 定时器TIM3初始化
TIM_TimeBaseStructure.TIM_Period = arr;
TIM_TimeBaseStructure.TIM_Prescaler = psc;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// PWM模式初始化
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = arr / 2;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
// 使能TIM3预装载寄存器ARR和CCR2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
// 启动TIM3
TIM_Cmd(TIM3, ENABLE);
}
// 初始化DAC波形输出
void TIM3_DAC_Init(uint16_t arr, uint16_t psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
DAC_InitTypeDef DAC_InitStructure;
// 使能TIM3、GPIOB和DAC时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_DAC, ENABLE);
// 配置PB4为复用输出DAC波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 定时器TIM3初始化
TIM_TimeBaseStructure.TIM_Period = arr;
TIM_TimeBaseStructure.TIM_Prescaler = psc;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// PWM模式初始化
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
// 使能TIM3预装载寄存器ARR和CCR2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
// DAC通道1初始化
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
// 启动TIM3
TIM_Cmd(TIM3, ENABLE);
// 启动DAC
DAC_Cmd(DAC_Channel_1, ENABLE);
}
// 初始化正弦波表格
void Sin_Table_Init(void)
{
uint16_t i;
for (i = 0; i < SAMPLE_NUM; i++)
{
sin_table[i] = (uint16_t)(2048 * (1 + sin(i * PI / 128)));
}
}
// 初始化正弦波输出
void TIM3_Sin_Init(uint16_t arr, uint16_t psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
DAC_InitTypeDef DAC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
// 使能TIM3、GPIOB、DMA1和DAC时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_DAC, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
// 配置PB4为复用输出DAC波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 定时器TIM3初始化
TIM_TimeBaseStructure.TIM_Period = arr;
TIM_TimeBaseStructure.TIM_Prescaler = psc;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// PWM模式初始化
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
// 使能TIM3预装载寄存器ARR和CCR2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
// DAC通道1初始化
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
// DMA1通道3初始化
DMA_DeInit(DMA1_Channel3);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&DAC->DHR12R1;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)sin_table;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = SAMPLE_NUM;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel3, &DMA_InitStructure);
// 启动TIM3
TIM_Cmd(TIM3, ENABLE);
// 启动DAC
DAC_Cmd(DAC_Channel_1, ENABLE);
// 启动DMA
DMA_Cmd(DMA1_Channel3, ENABLE);
}
```
在上述代码中,我们使用了TIM3定时器和DAC模块来产生PWM波形、三角波和正弦波。其中,PWM波形和三角波的产生方式类似,都是使用定时器的PWM模式,而正弦波的产生则是通过DAC模块配合DMA传输正弦波表格数据实现的。需要注意的是,在使用DAC模块时,我们需要将DMA的传输方向设置为“外设作为数据传输目的地”,也就是将正弦波数据发送到DAC的数据寄存器中。
阅读全文
相关推荐
















