基于pytorch库使用BP神经网络完成MNIST手写字体的识别。
时间: 2023-12-30 18:04:17 浏览: 96
好的,我可以为您提供一些代码片段来完成这个任务。首先,您需要安装PyTorch库并导入所需的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
```
接下来,您需要加载MNIST数据集:
```python
train_dataset = datasets.MNIST(root='data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='data/', train=False, transform=transforms.ToTensor(), download=True)
```
现在,您可以定义您的BP神经网络模型:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = x.view(-1, 784)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
```
接下来,您需要定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
现在,您可以训练您的模型:
```python
num_epochs = 10
batch_size = 64
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if (epoch+1) % 1 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
```
最后,您可以测试您的模型:
```python
correct = 0
total = 0
with torch.no_grad():
for data, targets in test_loader:
outputs = model(data)
_, predictions = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predictions == targets).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
```
这就是一个使用PyTorch库实现BP神经网络进行MNIST手写数字识别的代码示例。
阅读全文