newton法解非线性方程组matlab

时间: 2023-06-25 21:02:32 浏览: 44
### 回答1: Newton法又称牛顿迭代法,是求解非线性方程组最常用的方法之一。在matlab中实现Newton法求解非线性方程组一般需要输入初始值、非线性方程组及其导数信息。具体步骤如下: 1. 确定非线性方程组及其导数信息。 2. 设置初始值,并将其存储在一维列向量中。 3. 编写主程序代码,包括迭代执行循环,判断迭代停止条件等。 4. 在迭代过程中,利用所编写的求导函数来计算每一次迭代点的导数向量。 5. 利用公式将上一个迭代点更新为新的迭代点,并将其存储在一维列向量中。 6. 像此前那样迭代多次,直到迭代点收敛于方程组的解,或者到达预设的最大迭代次数。 7. 最后,输出最终迭代点所对应的非线性方程组的解。 需要注意的是,Newton法求解非线性方程组的成功与否,以及所得到的解是否精确,都与初始值的选择有关。因此,在实际应用中,通常需要多次尝试不同的初始值,并比较它们的收敛性和解的精度,才能最终确认所求解的可行性和正确性。 ### 回答2: Newton法是一种解非线性方程组的数值方法。在MATLAB中,我们可以使用fzero函数以及自己实现的牛顿法函数来解决非线性方程组。 首先,我们需要根据题目给出的方程组编写相应的函数,注意要将多个方程组合并成一个向量函数。接着,我们可以使用MATLAB自带的fzero函数来求解非线性方程组,这个函数是基于牛顿法实现的。在使用fzero函数时,需要提供函数句柄(即函数名),以及一个初始值作为求解的起点。 如果我们想手动实现Newton法,我们可以编写一个函数来描述牛顿法的迭代过程。在每一次迭代中,我们需要计算雅可比矩阵(Jacobian矩阵)和函数值,然后计算新的迭代点。我们可以选择一定的停机准则(例如误差的上限)来判断迭代是否结束,如果没有达到停机准则,就继续迭代。 需要注意的是,Newton法可能因为初始值的选取而发散,因此在实现时需要选择合适的初始值,并进行波动尝试。 综上,使用MATLAB来解决非线性方程组可以采用fzero函数或者手动实现牛顿法的方式。具体实现需要注意一些细节,例如矩阵的维度、停机准则的设置等等。 ### 回答3: Newton法是一种迭代算法,可用于解非线性方程组MATLAB。通常,非线性方程组无法使用代数方法求解,因此需要使用迭代方法。 Newton法分为两个步骤:计算增量向量和更新当前值。计算增量向量需要求解雅可比矩阵(Jacobian matrix),而更新当前值需要使用先前计算出的增量向量。 在MATLAB中使用Newton法解非线性方程组的基本步骤如下: 1. 定义非线性方程组,例如: `function [f] = myFunction(x)` `f = [x(1)^2 + x(2)^2 - 1;` `x(1)^2 - x(2)];` 2. 定义雅可比矩阵,例如: `function [J] = myJacobian(x)` `J = [2*x(1), 2*x(2);` `2*x(1), -1];` 3. 初始化迭代变量和误差容差,例如: `x = [1; 1];` `tol = 1e-6;` `err = 1;` 4. 循环迭代,直到误差小于容差或达到最大迭代次数,例如: `while err > tol` `f = myFunction(x);` `J = myJacobian(x);` `dx = -J\f;` `x = x + dx;` `err = norm(dx);` `end` 5. 输出最终结果,例如: `disp(x);` 这里的例子是解一个由两个非线性方程组成的方程组,在实际中具体的方程组需要根据实际情况进行定义。

相关推荐

在Matlab中,要使用Newton迭代法求解非线性方程组,可以按照以下步骤进行操作: 1. 定义非线性方程组:首先需要定义一个包含所有方程的函数。假设我们要解决的方程组是f(x) = 0,其中x是一个向量。那么就需要定义一个函数,接受该向量x作为输入,并返回一个向量,表示方程组的所有方程值。可以使用Matlab中的匿名函数或函数句柄来定义这个函数。 示例代码如下: matlab function F = equations(x) F = [f1(x); f2(x); ...; fn(x)]; end 其中,f1(x), f2(x), ..., fn(x)表示方程组的各个方程。 2. 计算雅可比矩阵:Newton迭代法需要计算方程组的雅可比矩阵(Jacobian Matrix)。可以使用Matlab中的符号计算工具箱来自动计算雅可比矩阵,或者自己手动计算。 示例代码如下: matlab function J = jacobian(x) syms x1 x2 ... xn; % 定义符号变量 J = jacobian([f1(x1, x2, ..., xn); f2(x1, x2, ..., xn); ...; fn(x1, x2, ..., xn)], [x1, x2, ..., xn]); end 其中,x1, x2, ..., xn表示非线性方程组中的变量。 3. 执行迭代过程:使用循环迭代计算非线性方程组的解。在每一步迭代中,根据当前点的近似解和雅可比矩阵,计算出下一个近似解。 示例代码如下: matlab x0 = [x10, x20, ..., xn0]; % 初始点的近似解 max_iter = 100; % 最大迭代次数 tol = 1e-6; % 精度要求 for iter = 1:max_iter F = equations(x0); % 计算当前点的函数值 J = jacobian(x0); % 计算当前点的雅可比矩阵 delta_x = -J \ F; % 计算方程组的增量解 x = x0 + delta_x; % 计算下一个近似解 if norm(delta_x) < tol % 判断是否满足收敛条件 break; end x0 = x; % 更新近似解 end 4. 输出结果:输出最终的解x。 示例代码如下: matlab disp('求解结果:'); disp(x); 需要注意的是,这只是Newton迭代法的一个简单示例,实际使用时可能需要进行更多的处理,例如对不收敛的情况进行处理,或者选择合适的初始解等。
newton迭代法是一种用于解非线性方程组的数值方法,可以通过MATLAB编程实现。下面给出一个简单的MATLAB程序来解决非线性方程组。 matlab function [x, iter] = newton_iteration(F, J, x0, epsilon, max_iterations) % F为非线性方程组的函数句柄,J为Jacobi矩阵的函数句柄,x0为初始解向量, % epsilon为收敛精度,max_iterations为最大迭代次数 % x为迭代解,iter为迭代次数 iter = 0; x = x0; while iter < max_iterations iter = iter + 1; delta = J(x) \ (-F(x)); x = x + delta; if norm(delta) < epsilon break; end end if iter == max_iterations fprintf('Reach maximum iterations without converging.\n'); end end 在此程序中,F是非线性方程组的函数句柄,J是Jacobi矩阵的函数句柄,x0是初始解向量,epsilon是收敛精度,max_iterations是最大迭代次数。该迭代函数会使用牛顿迭代法来计算非线性方程组的解。 在迭代过程中,我们首先将迭代次数iter设为0,将初始解向量x设为x0。在每次迭代中,我们计算Jacobi矩阵的逆矩阵与非线性方程组的负函数值之积,并将其称为delta。然后,更新解向量x为x加上delta。如果delta的范数小于收敛精度epsilon,则停止迭代。 最后,如果达到最大迭代次数而没有收敛,程序会显示一条警告信息。 使用该函数,你只需定义一个非线性方程组的函数句柄和Jacobi矩阵的函数句柄,然后调用newton_iteration函数即可得到解向量x和迭代次数iter。 希望这个程序对你有帮助!
### 回答1: 牛顿迭代法是一种求解非线性方程组的方法,可以使用Matlab进行实现。具体步骤如下: 1. 定义非线性方程组的函数表达式,例如: function F = myfun(x) F(1) = x(1)^2 + x(2)^2 - 1; F(2) = x(1) - x(2)^2; 2. 定义牛顿迭代法的迭代公式,例如: function [x, k] = newton(fun, x0, tol, maxiter) k = 0; x = x0; while k < maxiter F = fun(x); J = jacobian(fun, x); dx = -J\F'; x = x + dx'; if norm(F) < tol break; end k = k + 1; end 3. 调用函数进行求解,例如: [x, k] = newton(@myfun, [1, 1], 1e-6, 100); 其中,@myfun表示使用myfun函数进行求解,[1, 1]表示初始值,1e-6表示误差容限,100表示最大迭代次数。 4. 输出结果,例如: disp(['Solution: x = [', num2str(x(1)), ', ', num2str(x(2)), ']']); disp(['Iterations: ', num2str(k)]); 这样就可以使用Matlab实现牛顿迭代法求解非线性方程组了。 ### 回答2: 牛顿迭代法是求解非线性方程组的一种有效方法,它通过一系列迭代公式逼近方程组的根。在matlab中,我们可以使用该方法求解非线性方程组。 首先,我们需要定义一个函数句柄来表示非线性方程组,比如: f = @(x) [x(1)^2 + x(2)^2 - 4; x(1)*x(2) - 1]; 这里定义的函数句柄f表示一个含有两个未知变量的非线性方程组,其中第一个方程表示一个以原点为圆心,半径为2的圆,第二个方程表示一个过点(1,1)的直线与x轴的交点。 接下来,我们需要设定初始值x0和迭代终止条件tol,比如: x0 = [1;1]; tol = 1e-6; x0表示迭代的起点,tol表示迭代的终止条件,通常设置为一个较小的正数,如1e-6,表示当两个相邻迭代结果的差值小于等于1e-6时停止迭代。 然后,我们可以使用牛顿迭代公式对方程组进行迭代求解,具体公式如下: x = x - J\f(x); 其中,x表示当前迭代点的值,J表示方程组f在当前迭代点的雅可比矩阵,f(x)表示当前迭代点对应的方程组的函数值,\表示矩阵的左除,即求解如下线性方程组: J*dx = -f(x) 其中,dx表示当前迭代点相对于上一个迭代点的增量,即: dx = x - x_prev; 我们可以使用一个循环来实现牛顿迭代的过程,如下: x = x0; x_prev = x0; while norm(x - x_prev) > tol J = [2*x(1) 2*x(2); x(2) x(1)]; dx = J\-f(x); x_prev = x; x = x + dx; end 其中,norm函数用来计算向量的2-范数,表示向量的长度。迭代过程中,我们先计算当前点的雅可比矩阵J和函数值f(x),然后求解线性方程组得到增量dx,最后更新迭代点的值。 最后,我们可以使用disp函数输出最终的迭代结果,如下: disp(['x = (' num2str(x(1)) ', ' num2str(x(2)) ')']); 通过以上步骤,我们就可以成功地使用牛顿迭代法求解非线性方程组。 ### 回答3: 牛顿迭代法是一种求解非线性方程组的常用方法,它是基于牛顿-拉夫逊迭代法的思想,通过不断迭代逼近非线性方程组的解。在matlab中,可以使用牛顿迭代法求解非线性方程组,其步骤如下: 1. 首先定义非线性方程组的函数表达式,如:f = @(x) [x(1)^2+x(2)-11;x(1)+x(2)^2-7]; 2. 然后定义非线性方程组的雅可比矩阵,即f的偏导数矩阵,如:df = @(x) [2*x(1),1;1,2*x(2)]; 3. 初始化解向量,如:x = [1;1]; 4. 设置收敛条件,如:tol = 1e-6; 5. 开始迭代,如:for i=1:100 f_val = f(x); df_val = df(x); dx = -df_val\f_val; x = x + dx; if(norm(dx)<tol) break; end end 以上就是用牛顿迭代法求解非线性方程组的基本步骤,通过不断迭代可以逼近方程组的解。需要注意的是,初始解向量的设置、收敛条件的确定以及迭代次数的控制都会影响迭代结果的精度和速度,需要根据具体需要进行调整。此外,在matlab中还可以使用fsolve函数来实现牛顿迭代法求解非线性方程组,其使用方法更加方便快捷。
### 回答1: 牛顿迭代法是一种求解非线性方程组的方法,可以用于MATLAB编程。具体步骤如下: 1. 定义非线性方程组,例如: f1 = @(x) x(1)^2 + x(2)^2 - 1; f2 = @(x) x(1) - x(2)^2; 2. 定义初始值和迭代次数: x = [1;1]; max_iter = 100; 3. 编写牛顿迭代法的主函数: function [x, iter] = newton(f, x, max_iter, tol) % f: 非线性方程组 % x: 初始值 % max_iter: 最大迭代次数 % tol: 收敛精度 iter = ; x = x; while iter < max_iter iter = iter + 1; J = jacobian(f, x); % 计算雅可比矩阵 delta_x = -J\f(x); % 计算增量 x = x + delta_x; % 更新x if norm(delta_x) < tol % 判断是否收敛 break; end end 4. 调用主函数求解非线性方程组: f = @(x) [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^2]; [x, iter] = newton(f, x, max_iter, 1e-6); 其中,f为非线性方程组,x为初始值,max_iter为最大迭代次数,1e-6为收敛精度。函数返回值x为方程组的解,iter为实际迭代次数。 ### 回答2: Matlab是一种强大的数学软件,在解决非线性方程组的问题时,可以使用牛顿迭代法来求解。下面是关于Matlab牛顿迭代法求解非线性方程组的具体介绍。 牛顿迭代法是一种求解非线性方程的方法,其主要思想是利用函数在某一点的一阶或二阶导数信息,来逼近方程的根。具体来说,牛顿迭代法需要从初始猜测点开始迭代,不断使用局部一阶或二阶泰勒展开式来定义下一个猜测点,直至收敛到方程的解。 下面介绍在Matlab中如何利用牛顿迭代法求解非线性方程组。首先需要定义函数的符号表达式,在Matlab中可以使用以下命令进行定义: syms x y z f1 = x^2 + y^2 + z^2 - 25; f2 = x*y + x*z - 8; f3 = y*z - 3; 上述代码定义了三个未知数的非线性方程组,其中f1、f2和f3是每个未知数对应的方程。 接下来需要定义初始的猜测点,以及迭代的最大次数和允许的收敛精度。在Matlab中可以使用以下代码进行定义: x0 = [1;1;1]; % 初始猜测点 n_max = 100; % 迭代最大次数 tol = 1e-6; % 允许的收敛精度 然后,我们需要定义牛顿迭代法的迭代公式。在Matlab中,请使用以下代码进行定义: F = [f1;f2;f3]; J = jacobian(F,[x y z]); % 求解雅可比矩阵 iter = 1; while iter < n_max Jn = double(subs(J,[x y z],x0.')); % 计算雅可比矩阵在当前猜测点的值 Fn = double(subs(F,[x y z],x0.')); % 计算函数向量在当前猜测点的值 xn = x0 - Jn\Fn; % 牛顿迭代公式 if norm(xn - x0) <= tol % 检查收敛精度 break; end x0 = xn; % 记录当前猜测点 iter = iter + 1; % 迭代次数加1 end 在上述代码中,首先使用subs函数将x、y和z替换为当前的猜测点,得到雅可比矩阵和函数值。然后使用牛顿迭代公式得到下一个猜测点,并在下一次迭代时继续执行。如果达到了最大迭代次数或者精度达到了要求,则终止迭代。 最后,我们可以使用以下代码来输出求解结果: if iter < n_max fprintf('Converged to solution after %d iterations:\n', iter); disp(xn); else fprintf('Failed to converge after %d iterations:\n', n_max); end 该代码将输出求解结果,并指示是否成功达到了要求的精度。 总结来说,Matlab可以很容易地实现牛顿迭代法来求解非线性方程组的问题。通过定义函数表达式、初始猜测点、迭代公式以及收敛精度,可以在Matlab中执行快速的非线性方程组求解。 ### 回答3: matlab作为一种常用的数学软件,在求解非线性方程组中有着广泛的应用。其中牛顿迭代法是解决非线性方程组的一种常见方法。 牛顿迭代法是一种逐步逼近的迭代方法,其基本思想是利用函数在某一点的导数(或者偏导数)来构造一个逼近方程,然后根据逼近方程不断迭代,从而达到求解非线性方程组的目的。 在使用matlab求解非线性方程组时,可以利用matlab提供的牛顿迭代法函数进行计算。该函数的输入参数包括一个含有n个元素的初始猜测向量x,一个n×1的函数值向量f(x),一个n×n的雅可比矩阵J(x),以及一些其他的可选参数。其中,雅可比矩阵J(x)是对函数f(x)的一阶导数矩阵。 具体实现时,可以首先定义非线性方程组的函数形式和雅可比矩阵,然后通过调用matlab中的牛顿迭代法函数进行求解。通过不断迭代,可以逐渐得到非线性方程组的解,并可以控制精度和迭代次数等参数。 需要注意的是,在使用牛顿迭代法求解非线性方程组时,函数必须是具有可导性的,否则无法计算函数的导数,从而无法迭代求解。此外,在实际应用中,由于牛顿迭代法存在收敛性的限制和局部最优解的问题,需要对结果进行验证和分析,以确保得到的解在实际应用中具有合理性和可行性。 总的来说,通过在matlab中使用牛顿迭代法求解非线性方程组,可以方便、快捷地得到高精度的解,拓展了非线性方程组求解的方法和途径,并在多个领域的应用中发挥了重要作用。
牛顿法(Newton's method)是一种求解非线性方程组的方法,它可以快速地找到方程组的根。下面是用Matlab实现牛顿法求解非线性方程组的步骤: 1. 定义非线性方程组。例如,假设我们要求解如下的方程组: $$ \begin{cases} x^2 - y - 1 = 0 \\ x - y^2 + 1 = 0 \end{cases} $$ 2. 定义牛顿法的迭代公式。牛顿法的迭代公式为: $$ \mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k) $$ 其中,$\mathbf{x}_k$ 是第 $k$ 次迭代的解向量,$\mathbf{F}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的函数值向量,$\mathbf{J}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的雅可比矩阵。 3. 定义初始解向量和迭代终止条件。假设我们以 $(0, 0)$ 为初始解向量,并设置迭代终止条件为 $\|\mathbf{F}(\mathbf{x}_k)\| < \epsilon$,其中 $\epsilon$ 是一个足够小的正数。 4. 迭代求解。根据迭代公式不断更新解向量,直到满足迭代终止条件为止。 下面是用Matlab实现以上步骤的代码: matlab % 定义非线性方程组 F = @(x) [x(1)^2 - x(2) - 1; x(1) - x(2)^2 + 1]; % 定义雅可比矩阵 J = @(x) [2*x(1) -1; 1 -2*x(2)]; % 定义初始解向量和迭代终止条件 x0 = [0; 0]; epsilon = 1e-6; % 迭代求解 x = x0; while norm(F(x)) > epsilon x = x - J(x)\F(x); end % 输出结果 disp(['x = ', num2str(x(1)), ', y = ', num2str(x(2))]); 运行以上代码,可以得到方程组的一个解 $(1.6180, 0.6180)$。需要注意的是,由于牛顿法的收敛性与初始解向量的选取有关,因此可能存在多个解,或者无法收敛的情况。
### 回答1: Matlab中可以使用牛顿迭代法解非线性方程组。具体步骤如下: 1. 定义非线性方程组的函数,例如: function F = myfun(x) F = [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^3]; 其中,x为未知变量。 2. 定义牛顿迭代法的函数,例如: function [x,iter] = newton(fun,x,tol,maxiter) iter = ; x = x; while norm(fun(x)) > tol && iter < maxiter J = jacobian(fun,x); delta = - J\fun(x); x = x + delta; iter = iter + 1; end 其中,fun为非线性方程组的函数,x为初始值,tol为误差容限,maxiter为最大迭代次数。 3. 定义雅可比矩阵的函数,例如: function J = jacobian(fun,x) h = 1e-6; n = length(x); J = zeros(n,n); for i = 1:n x1 = x; x1(i) = x1(i) + h; J(:,i) = (fun(x1) - fun(x))/h; end 其中,h为微小量,n为未知变量的个数。 4. 调用牛顿迭代法函数,例如: [x,iter] = newton(@myfun,[1;1],1e-6,100); 其中,@myfun表示使用myfun函数作为非线性方程组的函数,[1;1]为初始值,1e-6为误差容限,100为最大迭代次数。 5. 输出结果,例如: disp(['x = ',num2str(x')]); disp(['iter = ',num2str(iter)]); 其中,num2str(x')表示将x转换为字符串,并转置为行向量输出。 ### 回答2: 牛顿迭代法是一种求解非线性方程组的重要方法,它的基本思想是利用函数在某个点处的一阶和二阶导数信息来近似函数,并通过迭代求解逼近方程组的解。 在MATLAB中,通过编写相应的程序实现牛顿迭代法求解非线性方程组十分方便。下面介绍具体步骤: 1.定义方程组。首先需要将待求解的非线性方程组用函数的形式表示出来。例如,假设我们要求解的方程组为: f1(x1,x2) = x1^2 + x2^2 - 1 = 0 f2(x1,x2) = x1 - cos(pi*x2) = 0 则可以在MATLAB中定义一个函数: function [F,J] = nonlinear(x) F(1) = x(1)^2 + x(2)^2 - 1; F(2) = x(1) - cos(pi*x(2)); if nargout > 1 J = [2*x(1), 2*x(2); 1, pi*sin(pi*x(2))]; end 其中,F是方程组的函数值,J是函数的雅可比矩阵,即一阶偏导数矩阵。 2.初始化参数。设定初始值向量x0和迭代终止条件tol,以及最大迭代次数maxiter。 3.迭代求解。利用牛顿迭代法公式: x(k+1) = x(k) - J(x(k))^(-1) * F(x(k)) 其中,J(x(k))是雅可比矩阵在当前点的值,^-1表示矩阵的逆。 在MATLAB中,可以通过以下代码实现迭代: x = x0; k = 0; while norm(F) > tol && k < maxiter [F, J] = nonlinear(x); x = x - J\F'; k = k + 1; end 其中,norm(F)是向量F的二范数,表示向量F的长度。当F的长度小于tol,或者迭代次数达到maxiter时,则停止迭代。 4.输出结果。输出迭代次数k和求解结果x。 以上就是MATLAB牛顿迭代法求解非线性方程组的基本步骤。需要注意的是,非线性方程组的求解通常是非常困难的,可能会存在多解、无解或不收敛等情况,需要对算法进行优化和改进,或利用其他求解方法来辅助求解。 ### 回答3: 牛顿迭代法是一种高精度求解非线性方程组的算法,需要用到导数和雅可比矩阵。在Matlab中实现牛顿迭代法需要以下几个步骤: 1. 定义函数f(x)和雅可比矩阵J(x)。f(x)表示非线性方程组的各个函数表达式,J(x)表示f(x)的雅可比矩阵,即偏导数构成的矩阵。 2. 初始值赋值。对于方程组中的每一个未知数,初始值需要进行赋值。 3. 迭代计算。使用牛顿迭代公式计算下一个迭代点的数值,直到满足停止条件。 4. 检查迭代收敛性和稳定性。迭代点是否收敛于方程组的解,迭代过程是否稳定。 下面是一个Matlab代码示例,用牛顿迭代法解非线性方程组: function [x1, x2] = newton_iteration(x1_0, x2_0, max_iteration, tolerance) %定义函数和初始值 f = @(x1, x2) [x1^2 + x2^2 - 4; x1^2 + x1*x2 - 5]; J = @(x1, x2) [2*x1, 2*x2; 2*x1 + x2, x1]; x = [x1_0; x2_0]; for i = 1:max_iteration %计算雅可比矩阵和f(x) Jx = J(x(1), x(2)); fx = f(x(1), x(2)); %计算下一个迭代点 delta_x = -Jx \ fx; x_new = x + delta_x; %判断停止条件 if norm(delta_x) < tolerance x1 = x_new(1); x2 = x_new(2); return end x = x_new; end error('达到最大迭代次数,未能达到精度要求!'); end 在这个例子中,我们定义了一个非线性方程组,初始值为(1, 3),最大迭代次数为1000,容差为0.000001,然后使用牛顿迭代法计算方程组的根。如果迭代过程在1000次内无法满足精度要求,函数将返回一个错误。在计算结果输出后,我们可以使用f(x)来检查计算结果是否正确,并进一步检查迭代收敛性和稳定性。

最新推荐

基于Yolov5和DeepSort的人流量监测 WebApp

基于Yolov5和DeepSort的人流量监测 WebApp

数据仓库数据挖掘综述.ppt

数据仓库数据挖掘综述.ppt

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

springboot新闻信息管理系统开发技术文档更新

# 1. 系统概述 ## 1.1 项目背景 在当今信息爆炸的时代,新闻信息是人们获取信息的重要渠道之一。为了满足用户对新闻阅读的需求,我们决定开发一个新闻信息管理系统,该系统旨在提供便捷的新闻发布、浏览与管理功能,同时也要保证系统的性能和安全防护。 ## 1.2 系统目标与功能需求 系统的目标是构建一个高效、稳定、安全的新闻信息管理平台,主要包括但不限于以下功能需求: - 新闻信息的增加、修改、删除、查询 - 用户的注册、登录与权限控制 - 数据库性能优化与缓存机制实现 - 安全防护措施的设计与漏洞修复 ## 1.3 技术选型与架构设计 在系统设计中,我们选择采用Java

hive 分区字段获取10天账期数据

假设你的 Hive 表名为 `my_table`,分区字段为 `account_date`,需要获取最近 10 天的数据,可以按照以下步骤操作: 1. 首先,获取当前日期并减去 10 天,得到起始日期,比如: ``` start_date=$(date -d "10 days ago" +"%Y-%m-%d") ``` 2. 接下来,使用 Hive 查询语句从分区中筛选出符合条件的数据。查询语句如下: ``` SELECT * FROM my_table WHERE account_date >= '${start_date}' ```

生活垃圾卫生填埋场运营管理手册.pdf

生活垃圾卫生填埋场运营管理手册.pdf

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

springboot新闻信息管理系统系统与用户功能示范

# 1. 引言 ## 1.1 背景介绍 在当今信息爆炸的时代,新闻信息管理系统对于各类机构和企业来说是至关重要的。它能够帮助用户高效地管理新闻信息,提升信息传播的效率和准确性。随着技术的不断发展,采用先进的技术手段来构建新闻信息管理系统已经成为一种趋势。 ## 1.2 目的和意义 本文旨在通过使用Spring Boot框架构建一个新闻信息管理系统,展示系统的基本功能和用户操作示范。通过这个系统,用户可以实现新闻信息的发布、编辑和管理,同时也可以进行用户权限管理等操作,提高了信息管理的效率和便利性。 ## 1.3 系统概述 新闻信息管理系统主要包括用户管理模块、新闻管理模块和权限管理模块。

python 实现创建一个文件(绝对路径,但是上级目录可能不存在)的代码

可以使用Python内置的os模块来实现创建一个文件(绝对路径,但是上级目录可能不存在)的代码,具体实现如下: ```python import os # 绝对路径 file_path = '/path/to/file.txt' # 获取文件所在目录 dir_path = os.path.dirname(file_path) # 如果文件所在目录不存在,则递归创建目录 if not os.path.exists(dir_path): os.makedirs(dir_path) # 创建空文件 open(file_path, 'w').close() ``` 以上代码通过os

计算机在商业银行审计中应用PPT学习教案.pptx

计算机在商业银行审计中应用PPT学习教案.pptx