truncateString (inputString) { const truncatedString = inputString.length > 6 ? inputString.substring(0, 5) + '...' : inputString return truncatedString } 检查并且优化
时间: 2024-01-15 17:05:26 浏览: 81
这段代码主要是用于截取字符串,如果字符串长度大于6,则截取前5个字符并加上省略号,否则不做处理直接返回原字符串。这里有几个可以优化的地方:
1. 函数名应该采用小驼峰命名法,即应该改为`truncateString`。
2. 需要在函数开头添加`function`关键字,以明确它是一个函数。
3. 函数应该添加参数类型和返回类型的注释。
4. 可以将该函数改为箭头函数,以缩短代码长度。
5. 由于函数主要是用于截取字符串,可以将函数名改为`truncateText`,以更准确地反映其功能。
下面是优化后的代码:
```
/**
* Truncates a string if it is longer than 6 characters.
* @param {string} text - The input string to be truncated.
* @returns {string} - The truncated string.
*/
const truncateText = (text) => {
const truncatedText = text.length > 6 ? text.substring(0, 5) + '...' : text;
return truncatedText;
};
```
相关问题
以下上一个html代码。<!DOCTYPE html><html><head> <title>ESP8266 LED</title> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> <style> body { font-family: Arial, sans-serif; } h1 { margin-top: 50px; text-align: center; } #slider-container { margin-top: 50px; width: 50%; margin-left: auto; margin-right: auto; } #slider-value { font-size: 24px; text-align: center; } </style></head><body> <h1>ESP8266 LED</h1> <div id="slider-container"> <input type="range" min="0" max="255" value="0" class="slider" id="brightness-slider"> <p id="slider-value">0</p> </div> <script> $(document).ready(function() { // 当滑条值改变时,发送AJAX请求 $("#brightness-slider").change(function() { var brightness = $(this).val(); $.get("/set-brightness?brightness=" + brightness, function(data, status) { // 更新亮度值 $("#slider-value").text(brightness); }); }); }); </script></body></html>。帮我写出对应的esp8266服务端代码
好的,以下是对应的 ESP8266 服务端代码示例:
```c++
#include <ESP8266WiFi.h>
const char* ssid = "your_wifi_ssid";
const char* password = "your_wifi_password";
WiFiServer server(80);
void setup() {
Serial.begin(9600);
delay(10);
// 连接 WiFi
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
// 启动服务
server.begin();
Serial.println("Server started");
}
void loop() {
// 等待客户端连接
WiFiClient client = server.available();
if (client) {
Serial.println("New client");
String request = "";
// 读取 HTTP 请求
while (client.connected()) {
if (client.available()) {
char c = client.read();
request += c;
if (c == '\n') {
break;
}
}
}
// 提取亮度值
int brightness = 0;
int pos = request.indexOf("brightness=");
if (pos != -1) {
String valueStr = request.substring(pos + 11);
brightness = valueStr.toInt();
}
// 发送 HTTP 响应
String response = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n";
response += "<!DOCTYPE HTML>\r\n<html>\r\n";
response += "Brightness set to " + String(brightness) + "\r\n";
response += "</html>\n";
client.print(response);
// 控制 LED 亮度
analogWrite(D1, brightness);
}
}
```
这里使用了 ESP8266 的 `WiFiServer` 类来创建一个 HTTP 服务器,监听端口号为 80。当客户端向服务器发送 HTTP 请求时,可以从请求中提取亮度值,并将其传递给 `analogWrite()` 函数来控制 LED 的亮度。
需要注意的是,这里使用了 ESP8266 的 D1 引脚来控制 LED,您需要根据实际情况修改引脚号。另外,为了使代码更加健壮,建议添加一些错误处理逻辑,例如在客户端断开连接时关闭连接等。
帮我全部写代码用python读取poetry.h5预料库,输入文字在前端啊生成藏尾诗
好的,以下是一个完整的 Python 代码示例和一个简单的前端页面,可以用于读取 poetry.h5 数据集、训练 LSTM 模型、保存模型、加载模型和生成藏尾诗。
Python 代码:
```python
import h5py
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout
from tensorflow.keras.callbacks import ModelCheckpoint
# 加载数据集
with h5py.File('poetry.h5', 'r') as f:
data = f['poetry'][:]
# 预处理数据
data = [str(i, encoding='utf-8') for i in data]
characters = sorted(list(set(''.join(data))))
char_indices = dict((c, i) for i, c in enumerate(characters))
indices_char = dict((i, c) for i, c in enumerate(characters))
maxlen = 6
step = 1
sentences = []
next_chars = []
for i in range(0, len(data) - maxlen, step):
sentences.append(data[i:i+maxlen])
next_chars.append(data[i+maxlen])
x = np.zeros((len(sentences), maxlen, len(characters)), dtype=np.bool)
y = np.zeros((len(sentences), len(characters)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
# 构建模型
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(characters))))
model.add(Dropout(0.2))
model.add(Dense(len(characters), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 定义回调函数
filepath = 'model.h5'
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# 训练模型
model.fit(x, y, epochs=50, batch_size=128, callbacks=callbacks_list)
# 生成藏尾诗
def generate_poem(input_text):
model.load_weights(filepath)
generated = input_text
for i in range(5):
x_pred = np.zeros((1, maxlen, len(characters)))
for t, char in enumerate(input_text):
x_pred[0, t, char_indices[char]] = 1
preds = model.predict(x_pred, verbose=0)[0]
next_index = np.argmax(preds)
next_char = indices_char[next_index]
generated += next_char
input_text = input_text[1:] + next_char
return generated
# 保存模型
model.save('model.h5')
```
前端代码:
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>藏尾诗生成器</title>
</head>
<body>
<h1>藏尾诗生成器</h1>
<p>请输入一句话:</p>
<input type="text" id="input_text">
<button onclick="generatePoem()">生成</button>
<p><span id="generated_poem"></span></p>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.3.0"></script>
<script>
async function generatePoem() {
const inputText = document.getElementById('input_text').value;
const model = await tf.loadLayersModel('model.h5');
let generated = inputText;
for (let i = 0; i < 5; i++) {
const xPred = tf.zeros([1, 6, 5562]);
for (let t = 0; t < inputText.length; t++) {
xPred.buffer().set(1, 0, t, inputText.charCodeAt(t));
}
const preds = model.predict(xPred);
const nextIndex = preds.argMax(1).dataSync()[0];
const nextChar = String.fromCharCode(nextIndex);
generated += nextChar;
inputText = inputText.substring(1) + nextChar;
}
document.getElementById('generated_poem').innerHTML = generated;
}
</script>
</body>
</html>
```
你需要将上述 Python 代码保存为一个 .py 文件,并在终端中运行它来训练模型和保存模型。然后,将上述 HTML 代码保存为一个 .html 文件,并在浏览器中打开它以使用藏尾诗生成器。注意,你需要将 poetry.h5 文件和 model.h5 文件放在与 .html 文件相同的目录中。
阅读全文