帮我全部写代码用python读取poetry.h5预料库,输入文字在前端啊生成藏尾诗
时间: 2024-02-23 17:57:56 浏览: 102
好的,以下是一个完整的 Python 代码示例和一个简单的前端页面,可以用于读取 poetry.h5 数据集、训练 LSTM 模型、保存模型、加载模型和生成藏尾诗。
Python 代码:
```python
import h5py
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout
from tensorflow.keras.callbacks import ModelCheckpoint
# 加载数据集
with h5py.File('poetry.h5', 'r') as f:
data = f['poetry'][:]
# 预处理数据
data = [str(i, encoding='utf-8') for i in data]
characters = sorted(list(set(''.join(data))))
char_indices = dict((c, i) for i, c in enumerate(characters))
indices_char = dict((i, c) for i, c in enumerate(characters))
maxlen = 6
step = 1
sentences = []
next_chars = []
for i in range(0, len(data) - maxlen, step):
sentences.append(data[i:i+maxlen])
next_chars.append(data[i+maxlen])
x = np.zeros((len(sentences), maxlen, len(characters)), dtype=np.bool)
y = np.zeros((len(sentences), len(characters)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
# 构建模型
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(characters))))
model.add(Dropout(0.2))
model.add(Dense(len(characters), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 定义回调函数
filepath = 'model.h5'
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# 训练模型
model.fit(x, y, epochs=50, batch_size=128, callbacks=callbacks_list)
# 生成藏尾诗
def generate_poem(input_text):
model.load_weights(filepath)
generated = input_text
for i in range(5):
x_pred = np.zeros((1, maxlen, len(characters)))
for t, char in enumerate(input_text):
x_pred[0, t, char_indices[char]] = 1
preds = model.predict(x_pred, verbose=0)[0]
next_index = np.argmax(preds)
next_char = indices_char[next_index]
generated += next_char
input_text = input_text[1:] + next_char
return generated
# 保存模型
model.save('model.h5')
```
前端代码:
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>藏尾诗生成器</title>
</head>
<body>
<h1>藏尾诗生成器</h1>
<p>请输入一句话:</p>
<input type="text" id="input_text">
<button onclick="generatePoem()">生成</button>
<p><span id="generated_poem"></span></p>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.3.0"></script>
<script>
async function generatePoem() {
const inputText = document.getElementById('input_text').value;
const model = await tf.loadLayersModel('model.h5');
let generated = inputText;
for (let i = 0; i < 5; i++) {
const xPred = tf.zeros([1, 6, 5562]);
for (let t = 0; t < inputText.length; t++) {
xPred.buffer().set(1, 0, t, inputText.charCodeAt(t));
}
const preds = model.predict(xPred);
const nextIndex = preds.argMax(1).dataSync()[0];
const nextChar = String.fromCharCode(nextIndex);
generated += nextChar;
inputText = inputText.substring(1) + nextChar;
}
document.getElementById('generated_poem').innerHTML = generated;
}
</script>
</body>
</html>
```
你需要将上述 Python 代码保存为一个 .py 文件,并在终端中运行它来训练模型和保存模型。然后,将上述 HTML 代码保存为一个 .html 文件,并在浏览器中打开它以使用藏尾诗生成器。注意,你需要将 poetry.h5 文件和 model.h5 文件放在与 .html 文件相同的目录中。
阅读全文