请用matlab编写程序实现由G代码生成的S型曲线

时间: 2023-08-31 21:21:00 浏览: 122
DOC

利用Matlab绘制曲线

star3星 · 编辑精心推荐
### 回答1: 下面是一个简单的MATLAB程序,用于生成由G代码指定的S型曲线。它基于三个输入参数: - start_pos:曲线的起始点坐标(x,y) - end_pos:曲线的结束点坐标(x,y) - feedrate:指定曲线的速度 程序中采用的S型曲线生成算法是基于加速度(a)和时间(t)计算位移(d)和速度(v)的标准公式。该算法遵循以下步骤: 1.计算加速度(a):根据给定的起始速度(v_start)、结束速度(v_end)和指定的加速时间(t_acc),计算出需要的加速度,以使曲线在指定时间内从起点速度加速到终点速度。 2.计算时间(t1和t2):根据起点和终点之间的距离,以及最大速度和加速度,计算出曲线在加速和减速阶段所需的时间。 3.计算总时间(t_total):将加速和减速时间相加,并计算曲线在恒定速度段上行驶的时间。 4.计算位移(d)和速度(v):根据加速度、时间和起始速度,计算出每个时间步长的位移和速度。 程序代码如下: ``` function [x,y] = s_curve(start_pos, end_pos, feedrate) % 解压起点和终点坐标 x1 = start_pos(1); y1 = start_pos(2); x2 = end_pos(1); y2 = end_pos(2); % 计算起点和终点之间的距离 dist = norm(end_pos - start_pos); % 设定最大速度和加速时间 v_max = feedrate/60; % 转换为秒为单位 t_acc = 0.1; % 加速时间 % 计算需要的加速度 a = (v_max^2 - 0)/(2*dist); % 计算加速和减速时间 t1 = v_max/a; t2 = (dist/v_max) - t1; % 计算总时间 t_total = 2*t1 + t2; % 初始化时间步长和速度 t = linspace(0,t_total,1000); v = zeros(size(t)); % 计算加速段速度 v(t <= t1) = a*t(t <= t1); % 计算恒定速度段速度 v(t > t1 & t <= (t1+t2)) = v_max; % 计算减速段速度 v(t > (t1+t2) & t <= t_total) = v_max - a*(t(t > (t1+t2) & t <= t_total) - t1 - t2); % 初始化位移 d = zeros(size(t)); d(1) = 0; % 计算位移 for i = 2:length(t) d(i) = d(i-1) + 0. ### 回答2: 要用Matlab编写程序实现由G代码生成的S型曲线,可以参考下面的步骤: 1. 定义输入参数:首先,我们需要定义曲线的起始点、结束点和控制点。可以将这些点的坐标分别定义为(start_x, start_y),(end_x, end_y)和(control_x, control_y),并根据实际情况给出这些值。 2. 计算中间点:根据S型曲线的特性,我们可以通过计算起始点和结束点的中间点来确定曲线的形状。可以使用如下公式计算中间点的坐标(mid_x, mid_y): mid_x = (start_x + end_x) / 2 mid_y = (start_y + end_y) / 2 3. 计算控制点坐标:根据S型曲线的曲率要求,我们可以在中间点的基础上计算控制点的坐标(control_x, control_y)。可以使用如下公式计算控制点坐标: control_x = mid_x - k * (end_y - start_y) control_y = mid_y + k * (end_x - start_x) 其中,k是一个控制曲线曲率的参数,可以根据实际需要来调整。 4. 绘制曲线:最后,利用Matlab中的绘图函数,可以使用Bezier曲线或样条曲线的方法来绘制S型曲线。可以使用如下代码来实现绘制曲线的功能: t = linspace(0, 1, 100); % 将参数t从0变化到1,并分成100等分 x = (1-t).^2 * start_x + 2 * t .* (1-t) * control_x + t.^2 * end_x; % 计算x坐标 y = (1-t).^2 * start_y + 2 * t .* (1-t) * control_y + t.^2 * end_y; % 计算y坐标 plot(x, y); % 绘制曲线 以上就是用Matlab编写程序实现由G代码生成的S型曲线的步骤。根据给定的起始点、结束点和控制点,可以按照上述步骤进行计算和绘制。 ### 回答3: 在MATLAB中实现由G代码生成的S型曲线可以按照以下步骤进行编写程序: 1. 首先定义S曲线的参数,包括起始点位置、终点位置、最大加速度、最大速度和总时间。 2. 计算曲线的总长度,即起始点到终点的距离。 3. 根据最大加速度和最大速度,计算出加速度阶段和匀速阶段需要的时间。 4. 计算出加速阶段的距离和减速阶段的距离,即总长度减去匀速阶段的距离的一半。 5. 使用时间和距离的关系方程,计算出加速阶段、匀速阶段和减速阶段的速度和位置。 6. 在MATLAB中使用plot函数,绘制出S曲线的速度和位置图像。 下面是一个简单的MATLAB代码示例: ```matlab % 定义参数 start_pos = 0; % 起始点位置 end_pos = 10; % 终点位置 max_acc = 1; % 最大加速度 max_vel = 2; % 最大速度 total_time = 5; % 总时间 % 计算总长度 total_length = abs(end_pos - start_pos); % 计算加速阶段和匀速阶段的时间 acc_time = max_vel / max_acc; const_vel_time = (total_length - max_vel^2 / (2 * max_acc)) / max_vel; % 计算加速阶段和减速阶段的距离 acc_length = 1/2 * max_acc * acc_time^2; dec_length = acc_length; % 计算加速阶段、匀速阶段和减速阶段的速度和位置 t = linspace(0, total_time, 1000); vel = zeros(size(t)); pos = zeros(size(t)); accel_mask = t <= acc_time; accel_t = t(accel_mask); vel(accel_mask) = max_acc * accel_t; pos(accel_mask) = 1/2 * max_acc * accel_t.^2; const_vel_mask = t > acc_time & t <= (total_time - acc_time); const_vel_t = t(const_vel_mask); vel(const_vel_mask) = max_vel; pos(const_vel_mask) = acc_length + max_vel * (const_vel_t - acc_time); deccel_mask = t > (total_time - acc_time); deccel_t = t(deccel_mask); vel(deccel_mask) = max_vel - max_acc * (deccel_t - (total_time - acc_time)); pos(deccel_mask) = acc_length + max_vel * (total_time - 2 * acc_time) + 1/2 * (max_vel + max_acc * (deccel_t - (total_time - acc_time))) .* (deccel_t - (total_time - acc_time)); % 绘制速度曲线 figure; plot(t, vel); xlabel('时间'); ylabel('速度'); title('S曲线的速度'); % 绘制位置曲线 figure; plot(t, pos); xlabel('时间'); ylabel('位置'); title('S曲线的位置'); ``` 以上代码根据指定的起始点、终点、最大加速度、最大速度和总时间,在MATLAB中绘制出了S曲线的速度和位置曲线图。可以根据编写的程序自定义参数进行曲线的生成和绘制。
阅读全文

相关推荐

最新推荐

recommend-type

MatlabSimulink生成CC++代码的实现

MatlabSimulink生成CC++代码的实现 Matlab/Simulink 是一个功能强大且广泛应用的模型设计和仿真工具,它可以生成高效、可靠的代码,应用于各种嵌入式系统中,本文将讨论如何使用 Simulink Coder/Embedded Coder 从...
recommend-type

有限差分法的Matlab程序(椭圆型方程).doc

在Matlab中实现有限差分法可以帮助我们计算那些无法直接解析求解的复杂方程。文档标题提到的是应用于椭圆型方程的有限差分法,椭圆型方程是微分方程的一种类型,包括泊松方程等,通常在描述无源、稳定状态的问题时...
recommend-type

matlab读取串口数据并显示曲线的实现示例

本文将详细介绍如何使用MATLAB实现这一功能,通过一个具体的示例来展示如何接收串口数据并绘制实时曲线。 首先,我们需要创建一个主文件,例如`serial_test2.m`。这个文件中定义了全局变量`t`、`x`、`m`和`ii`,...
recommend-type

基于MATLAB_Simulink平台下TIC2000DSP代码的自动生成.pdf

该方法利用MATLAB、Simulink、Real-Time Workshop、DSP Blocksets工具箱和TI公司的开发工具CCS IDE,在Simulink环境下,用图形化的方式设计DSP程序,实现代码的自动生成。完成了DSP系统设计到实施的无缝集成,缩短了...
recommend-type

腐蚀和膨胀的matlab实现

本文将分享一个使用MATLAB实现腐蚀和膨胀的源代码。 一、图像读取和灰度化 首先,我们需要读取一幅图像,并将其转换为灰度图像。我们可以使用MATLAB的imread函数来读取图像,并使用size函数来获取图像的大小。然后...
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。