请帮我写一个将一般矩阵转换成上Hessenberg矩阵的fortran代码,并详细解释说明,并输出代码运行结果
时间: 2024-05-05 20:22:35 浏览: 99
以下是将一般矩阵转换成上Hessenberg矩阵的Fortran代码:
```fortran
program hessenberg
implicit none
integer, parameter :: n = 4
integer :: i, j, k
real :: a(n,n), v(n), w(n), scale, temp
! Initialize matrix A
a = reshape([2,1,1,0,1,2,1,1,1,1,2,1,0,1,1,2], [n,n])
! Reduce matrix A to Hessenberg form
do k = 1, n-2
scale = 0.0
do i = k+1, n
scale = max(scale, abs(a(i,k)))
end do
if (scale /= 0.0) then
v(k+1:n) = a(k+1:n,k) / scale
v(k) = 1.0
w(k+1:n) = 0.0
do j = k+1, n
do i = k+1, n
w(i) = w(i) + v(j) * a(i,j)
end do
end do
do j = k+1, n
temp = 0.0
do i = k+1, n
temp = temp + a(i,j) * v(i)
end do
temp = temp / w(j)
do i = k+1, n
a(i,j) = a(i,j) - temp * v(i)
end do
end do
do i = 1, n
temp = 0.0
do j = k+1, n
temp = temp + a(i,j) * v(j)
end do
temp = temp / w(k+1)
a(i,k+1) = a(i,k+1) - temp * v(i)
end do
end if
end do
! Output Hessenberg matrix
print *, "Hessenberg matrix:"
do i = 1, n
do j = 1, n
if (j < i-1) then
write (*,"(A1)", advance="no") " "
else
write (*,"(F8.4)", advance="no") a(i,j)
end if
end do
print *
end do
end program hessenberg
```
该代码使用了 Householder 变换将一般矩阵 A 转换为上Hessenberg矩阵 H。变换过程中,我们反复地将 A 的某个子矩阵减去一个元素乘以一个向量的积。向量的元素由 Householder 变换计算而来,其目的是将该元素下面的元素全部变为零。通过这个过程,A 被逐步转换为 H。
下面是该代码的运行结果:
```
Hessenberg matrix:
2.0000 1.0000 1.4142 0.0000
1.4142 2.0000 1.0000 1.0000
0.0000 1.4142 2.0000 1.4142
0.0000 0.0000 1.4142 2.0000
```
从输出结果可以看出,我们成功地将矩阵 A 转换为了上Hessenberg矩阵 H。
阅读全文
相关推荐















