MATLAB DDPG PID
时间: 2024-01-27 20:53:59 浏览: 182
这是一个IT类问题。
DDPG(Deep Deterministic Policy Gradient)是一种深度强化学习算法,用于解决连续动作空间的问题。PID(Proportional-Integral-Derivative)则是一种传统的控制算法,常用于控制系统中。
在MATLAB中,可以使用DDPG算法来优化PID控制器的参数,从而实现更好的控制效果。具体实现方法可以参考MATLAB官方文档和相关论文。
相关问题
DDPG自适应PID MATLAB
### 使用MATLAB实现DDPG进行自适应PID控制器设计
#### DDPG简介
深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是一种结合了Actor-Critic方法和函数逼近技术的强化学习算法。该算法适用于连续动作空间的任务,在机器人控制等领域有广泛应用。
#### MATLAB中的RL工具箱支持
MATLAB提供了Reinforcement Learning Toolbox,其中包含了创建、训练以及部署各种类型的强化学习模型的功能,包括但不限于DDPG。此工具箱允许用户定义环境动态特性并指定奖励信号,从而构建复杂的控制系统[^1]。
#### 创建DDPG Agent
为了在MATLAB中建立一个基于DDPG的自适应PID控制器,首先需要安装上述提到的Reinforcement Learning Toolbox。接着按照如下方式设置:
```matlab
% 定义状态向量维度 (例如: [位置;速度])
observationInfo = rlNumericSpec([2 1]);
% 动作向量维度对应于PID参数(P,I,D)
actionInfo = rlNumericSpec([3 1], ...
'LowerLimit', [-Inf;-Inf;-Inf], ...
'UpperLimit', [ Inf; Inf; Inf ]);
% 初始化随机种子以确保结果重现性
rng(0);
% 构建双层神经网络作为actor critic结构的一部分
numObs = observationInfo.Dimension;
numAct = actionInfo.Dimension;
actorNetwork = [
featureInputLayer(numObs,'Normalization','none','Name','state')
fullyConnectedLayer(400,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(300,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(numAct,'Name','fc3')];
criticNetwork = [
featureInputLayer(numObs,'Normalization','none','Name','observation')
sequenceInputLayer(numAct,'Name','action')
concatenationLayer(1,2,'Name','concat')
fullyConnectedLayer(400,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(300,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(1,'Name','fc3')];
opt = rlAgentOptions;
opt.UseDevice = "cpu";
agent = rlDDPGAgent(actorNetwork,criticNetwork,opt);
```
这段代码片段展示了如何配置观察空间(`observationInfo`)与行动空间(`actionInfo`), 并且指定了两个深层前馈神经网路分别代表演员(ACTOR)和评论家(CRITIC),最后实例化了一个DDPG代理(agent)[^1]。
#### 训练过程
一旦建立了DDPG agent之后,则可以将其应用于特定的应用场景下进行训练。对于本案例而言,即是要让这个智能体学会调整PID控制器的比例积分微分系数来优化系统的响应性能。这通常涉及到设定适当的目标函数或成本函数,并通过反复试验使这些参数趋向最优解。
#### 测试与验证
完成训练阶段后,应当对所得到的结果进行全面评估。可以通过比较不同条件下被控对象的行为差异来进行分析;也可以借助可视化手段直观展示改进前后系统特性的改变情况。
用于MATLAB的DDPG代码整定PID参数
DDPG(Deep Deterministic Policy Gradient)是一种深度强化学习算法,可以用于连续控制问题的解决。在MATLAB中,可以使用Deep Learning Toolbox中的函数以及Reinforcement Learning Toolbox中的函数来实现DDPG算法。
下面是一个使用DDPG算法来优化PID控制器参数的示例代码:
```matlab
%% 初始化环境
mdl = 'pendulum';
open_system(mdl);
Ts = 0.05;
Tf = 10;
obsInfo = rlNumericSpec([3 1],'LowerLimit',[-pi/2; -8; -Inf],'UpperLimit',[pi/2; 8; Inf]);
obsInfo.Name = 'observations';
obsInfo.Description = 'theta;thetadot;thetaerror';
actInfo = rlNumericSpec([1 1],'LowerLimit',-10,'UpperLimit',10);
actInfo.Name = 'torque';
env = rlSimulinkEnv(mdl,mdl,obsInfo,actInfo);
%% 确定深度神经网络的结构
statePath = [
imageInputLayer([3 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(64,'Name','CriticStateFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(64,'Name','CriticStateFC2')];
actionPath = [
imageInputLayer([1 1 1],'Normalization','none','Name','action')
fullyConnectedLayer(64,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
%% 建立深度决策网络
actorNetwork = [
imageInputLayer([3 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(64,'Name','ActorFC1')
reluLayer('Name','ActorRelu1')
fullyConnectedLayer(64,'Name','ActorFC2')
reluLayer('Name','ActorRelu2')
fullyConnectedLayer(1,'Name','ActorFC3')
tanhLayer('Name','ActorTanh1')
scalingLayer('Name','ActorScaling1','Scale',2)];
%% 设置DDPG代理
agentOpts = rlDDPGAgentOptions;
agentOpts.SampleTime = Ts;
agentOpts.DiscountFactor = 0.99;
agentOpts.MiniBatchSize = 256;
agentOpts.ExperienceBufferLength = 1e6;
agentOpts.TargetSmoothFactor = 1e-3;
agentOpts.NoiseOptions.Variance = 0.2;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;
agentOpts.SaveExperienceBufferWithAgent = true;
agentOpts.ResetExperienceBufferBeforeTraining = false;
agentOpts.UseParallel = false;
agentOpts.UseGPU = false;
agent = rlDDPGAgent(actorNetwork,criticNetwork,agentOpts);
%% 训练代理
trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 100;
trainOpts.MaxStepsPerEpisode = ceil(Tf/Ts);
trainOpts.StopTrainingCriteria = 'AverageReward';
trainOpts.StopTrainingValue = -400;
trainOpts.ScoreAveragingWindowLength = 30;
trainOpts.SaveAgentCriteria = 'EpisodeReward';
trainOpts.SaveAgentValue = -350;
trainOpts.Plots = 'training-progress';
trainingStats = train(agent,env,trainOpts);
```
在这个示例中,我们使用了一个具有64个神经元的深度神经网络来近似Q函数,另一个具有64个神经元的深度神经网络来确定actor的策略。我们还设置了一些DDPG代理的选项,如样本时间、折扣因子、噪声参数等。
在训练代理之后,我们可以使用以下代码来测试代理的性能,并使用优化的PID参数控制摆杆系统:
```matlab
agentOpts.NoiseOptions.Variance = 0;
simOpts = rlSimulationOptions('MaxSteps',1000);
experience = sim(env,agent,simOpts);
```
这段代码将关闭DDPG代理的噪声,并使用优化的PID参数控制摆杆系统。
阅读全文
相关推荐













