Bn层通道删去第[4,5,6,8]个,bn层其他参数改变的代码
时间: 2024-03-20 17:39:08 浏览: 48
以下是通道删去第[4,5,6,8]个并修改其他参数的代码示例:
```python
import torch.nn as nn
class CustomBN(nn.Module):
def __init__(self, num_features):
super(CustomBN, self).__init__()
self.bn = nn.BatchNorm2d(num_features)
# 获取原有的参数
weight = self.bn.weight.data.clone()
bias = self.bn.bias.data.clone()
mean = self.bn.running_mean.clone()
var = self.bn.running_var.clone()
# 删除指定的通道
weight = torch.cat((weight[:4], weight[7:]), dim=0)
bias = torch.cat((bias[:4], bias[7:]), dim=0)
mean = torch.cat((mean[:4], mean[7:]), dim=0)
var = torch.cat((var[:4], var[7:]), dim=0)
# 更新参数
self.bn.weight = nn.Parameter(weight)
self.bn.bias = nn.Parameter(bias)
self.bn.running_mean = mean
self.bn.running_var = var
def forward(self, x):
x = self.bn(x)
return x
```
在上面的代码中,我们首先继承了 `nn.BatchNorm2d` 类,然后在初始化函数中获取了原有的参数并进行了修改,接着更新了 `weight`、`bias`、`running_mean` 和 `running_var` 参数。最后我们重写了 `forward` 函数,将输入的数据 `x` 通过修改后的 `bn` 层进行前向传播,并返回输出结果。
阅读全文