在学生类里加入map类型的数据,并在测试类中给map类型的数据赋值

时间: 2024-02-25 22:55:08 浏览: 26
好的,你可以参考以下代码实现: ```c++ #include <iostream> #include <map> #include <string> class Student { public: // 构造函数 Student(const std::string& name, int age) : name_(name), age_(age) {} // 设置学生的成绩 void SetScore(const std::string& course, double score) { scores_[course] = score; } // 获取学生的平均成绩 double GetAverageScore() const { if (scores_.empty()) { return 0.0; } double sum = 0.0; for (const auto& score : scores_) { sum += score.second; } return sum / scores_.size(); } private: std::string name_; // 学生姓名 int age_; // 学生年龄 std::map<std::string, double> scores_; // 学生成绩 }; int main() { Student student("小明", 18); student.SetScore("语文", 90.0); student.SetScore("数学", 95.0); student.SetScore("英语", 92.0); std::cout << "平均成绩:" << student.GetAverageScore() << std::endl; return 0; } ``` 在上面的代码中,我们在`Student`类中加入了一个`std::map<std::string, double>`类型的成员变量`scores_`,用于存储学生的各科成绩。我们为`Student`类提供了一个`SetScore`方法,用于设置学生的成绩。在`main`函数中,我们创建了一个名为`student`的`Student`对象,并使用`SetScore`方法为其设置了三门课程的成绩。最后,我们调用了`GetAverageScore`方法,输出学生的平均成绩。

相关推荐

帮我修改下面这个代码:#include <iostream> #include <queue> using namespace std; struct Node { int number; int father; int floor; bool bl = false; }; class dls { private: int n; Node* node; int** map; public: dls(int n):n(n){} void Map()//建立邻接矩阵的下三角并初始化 { map = new int* [n]; for (int i = 0; i < n; i++) map[i] = new int[i + 1]; for (int i = 0; i < n; i++) for (int j = 0; j <= i; j++) map[i][j] = 0; } void createGraph()//对邻接矩阵进行赋值 { cout << "请输入村庄的" << n - 1 << "条道路:" << endl; node = new Node[n]; for (int i = 0; i < n; i++) node[i].number = i; for (int i = 0; i < n - 1; i++) { int x, y; cin >> x >> y; if (x >= y) map[x][y] = 1; else map[y][x] = 1; } } void BFSTree()//利用BFS建立树 { queue<int>qu; qu.push(0); node[0].father = 0; node[0].floor = 0; node[0].bl = true; while (!qu.empty()) { int x = qu.front(); qu.pop(); for (int i = 0; i < n; i++) { if (map[x][i] == 1 || map[i][x] == 1 && node[i].bl = false) { node[i].bl = true; node[i].father = x; node[i].floor = node[x].floor + 1; qu.push(i); } } } } int findFather(int m,int n)//寻找父亲结点 { int my_m = m; int my_n = n; int gap; if (node[m].floor > node[n].floor) { gap = node[m].floor - node[m].floor; for (int i = 0; i < gap; i++) my_m = node[m].father; } else { gap = node[n].floor - node[m].floor; for (int i = 0; i < gap; i++) my_n = node[n].father; } while (my_m != my_n) { my_m = node[m].father; my_n = node[n].father; } return m; } }; int main() { int T; int N; int M; cout << "请输入需要测试的组数:"; cin >> T; while (T--) { cout << "请输入村庄个数:"; cin >> N; dls ddd(N); ddd.Map(); ddd.createGraph(); ddd.BFSTree(); cout << "请输入需要测试的问题数:"; cin >> M; for (int i = 1; i <= M; i++) { int a, b, c; cout << "请依次输入abc的编号: "; cin >> a >> b >> c; int ab = ddd.findFather(a, b); int ac = ddd.findFather(a, c); int bc = ddd.findFather(b, c); if (ac == c && bc == c && ab == c) cout << "Yes" << endl; else if (ac == c && bc != c) cout << "Yes" << endl; else if (bc == c && ac != c) cout << "Yes" << endl; else cout << "No" << endl; } } return 0; }

def train(train_loader, model, optimizer, epoch, best_loss): model.train() loss_record2, loss_record3, loss_record4 = AvgMeter(), AvgMeter(), AvgMeter() accum = 0 for i, pack in enumerate(train_loader, start=1): # ---- data prepare ---- images, gts = pack images = Variable(images).cuda() gts = Variable(gts).cuda() # ---- forward ---- lateral_map_4, lateral_map_3, lateral_map_2 = model(images) # ---- loss function ---- loss4 = structure_loss(lateral_map_4, gts) loss3 = structure_loss(lateral_map_3, gts) loss2 = structure_loss(lateral_map_2, gts) loss = 0.5 * loss2 + 0.3 * loss3 + 0.2 * loss4 # ---- backward ---- loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_norm) optimizer.step() optimizer.zero_grad() # ---- recording loss ---- loss_record2.update(loss2.data, opt.batchsize) loss_record3.update(loss3.data, opt.batchsize) loss_record4.update(loss4.data, opt.batchsize) # ---- train visualization ---- if i % 400 == 0 or i == total_step: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], ' '[lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}]'. format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record2.show(), loss_record3.show(), loss_record4.show())) print('lr: ', optimizer.param_groups[0]['lr']) save_path = 'snapshots/{}/'.format(opt.train_save) os.makedirs(save_path, exist_ok=True) if (epoch+1) % 1 == 0: meanloss = test(model, opt.test_path) if meanloss < best_loss: print('new best loss: ', meanloss) best_loss = meanloss torch.save(model.state_dict(), save_path + 'TransFuse-%d.pth' % epoch) print('[Saving Snapshot:]', save_path + 'TransFuse-%d.pth'% epoch) return best_loss

最新推荐

recommend-type

2020最新整理JavaOOP面试题108题,含答案

* 显示转换:把一个大类型的数据强制赋值给小类型的数据 * 隐式转换:大范围的变量能够接受小范围的数据 十三、Char 类型的转换 * Char 类型可以隐式转成 int 类型,但是不能隐式转换成 string 类型 * Char 类型...
recommend-type

童程童美2020Python笔试题A卷.doc

在本资源中,我们总结了 Python 基础知识点,涵盖了 Python 编程语言的基本概念、语法、数据类型、控制结构、函数、模块、文件操作、异常处理等方面的知识点。 一、选择题(共 15 题,每题 2 分,共 30 分) 1. ...
recommend-type

Scala实例手册(英文版)

- 在Scala中,函数是第一类公民,意味着它们可以被赋值给变量、作为参数传递给其他函数,或者作为其他函数的返回值。 - 匿名函数(lambda表达式)简化了短小函数的定义,通常用于高阶函数的参数。 - 函数可以通过...
recommend-type

微软-Nvida-网易-阿里-淘宝部分笔试题

1. 条件覆盖测试:题目中提到的语句"A&gt;1 OR B ,为了达到100%条件覆盖,至少需要两个测试用例。一个用例使得A&gt;1成立,另一个用例使得B 成立。 2. DoS攻击:DoS(Denial of Service)攻击是指通过大量恶意请求导致...
recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。