wire [ROWBUF_IDX_W-1:0] lbuf_cnt_r; wire [ROWBUF_IDX_W-1:0] lbuf_cnt_nxt; wire lbuf_cnt_clr; wire lbuf_cnt_incr; wire lbuf_cnt_ena; wire lbuf_cnt_last; wire lbuf_icb_rsp_hsked; wire nice_rsp_valid_lbuf; wire nice_icb_cmd_valid_lbuf; assign lbuf_icb_rsp_hsked = state_is_lbuf & nice_icb_rsp_hsked; assign lbuf_icb_rsp_hsked_last = lbuf_icb_rsp_hsked & lbuf_cnt_last; assign lbuf_cnt_last = (lbuf_cnt_r == clonum); assign lbuf_cnt_clr = custom3_lbuf & nice_req_hsked; assign lbuf_cnt_incr = lbuf_icb_rsp_hsked & ~lbuf_cnt_last; assign lbuf_cnt_ena = lbuf_cnt_clr | lbuf_cnt_incr; assign lbuf_cnt_nxt = ({ROWBUF_IDX_W{lbuf_cnt_clr }} & {ROWBUF_IDX_W{1'b0}}) | ({ROWBUF_IDX_W{lbuf_cnt_incr}} & (lbuf_cnt_r + 1'b1) ) ; sirv_gnrl_dfflr #(ROWBUF_IDX_W) lbuf_cnt_dfflr (lbuf_cnt_ena, lbuf_cnt_nxt, lbuf_cnt_r, nice_clk, nice_rst_n); // nice_rsp_valid wait for nice_icb_rsp_valid in LBUF assign nice_rsp_valid_lbuf = state_is_lbuf & lbuf_cnt_last & nice_icb_rsp_valid; // nice_icb_cmd_valid sets when lbuf_cnt_r is not full in LBUF assign nice_icb_cmd_valid_lbuf = (state_is_lbuf & (lbuf_cnt_r < clonum));详细讲解这段代码

时间: 2023-08-21 16:08:35 浏览: 63
这段代码是一些 Verilog 代码,用于实现一个逻辑缓冲区(lbuf)的计数器。这个计数器被用来追踪逻辑缓冲区中当前存储的元素的数量。 具体来说,这个计数器由以下信号组成: - lbuf_cnt_r:当前计数器的值。 - lbuf_cnt_nxt:下一个计数器的值。 - lbuf_cnt_clr:清空计数器的信号。 - lbuf_cnt_incr:增加计数器的信号。 - lbuf_cnt_ena:计数器是否应该被更新的信号。 - lbuf_cnt_last:当前逻辑缓冲区是否已满的信号。 - lbuf_icb_rsp_hsked:表示 ICB 总线响应已经被请求的信号。 - nice_rsp_valid_lbuf:表示当前逻辑缓冲区中的所有元素是否已经被处理完毕的信号。 - nice_icb_cmd_valid_lbuf:表示当前逻辑缓冲区中是否有空闲的位置可以存储新的元素的信号。 这个计数器的实现是通过一个 D 触发器实现的。当 lbuf_cnt_ena 信号为高电平时,计数器的值将被更新为 lbuf_cnt_nxt。 值得注意的是,nice_rsp_valid_lbuf 和 nice_icb_cmd_valid_lbuf 的值都是在状态为 LBUF 时计算得出的。其中,nice_rsp_valid_lbuf 的值表示当前逻辑缓冲区中的所有元素是否已经被处理完毕,而 nice_icb_cmd_valid_lbuf 的值则表示当前逻辑缓冲区是否还有空闲的位置可以存储新的元素。
相关问题

wire [ROWBUF_IDX_W-1:0] sbuf_cnt_r; wire [ROWBUF_IDX_W-1:0] sbuf_cnt_nxt; wire sbuf_cnt_clr; wire sbuf_cnt_incr; wire sbuf_cnt_ena; wire sbuf_cnt_last; wire sbuf_icb_cmd_hsked; wire sbuf_icb_rsp_hsked; wire nice_rsp_valid_sbuf; wire nice_icb_cmd_valid_sbuf; wire nice_icb_cmd_hsked; assign sbuf_icb_cmd_hsked = (state_is_sbuf | (state_is_idle & custom3_sbuf)) & nice_icb_cmd_hsked; assign sbuf_icb_rsp_hsked = state_is_sbuf & nice_icb_rsp_hsked; assign sbuf_icb_rsp_hsked_last = sbuf_icb_rsp_hsked & sbuf_cnt_last; assign sbuf_cnt_last = (sbuf_cnt_r == clonum); //assign sbuf_cnt_clr = custom3_sbuf & nice_req_hsked; assign sbuf_cnt_clr = sbuf_icb_rsp_hsked_last; assign sbuf_cnt_incr = sbuf_icb_rsp_hsked & ~sbuf_cnt_last; assign sbuf_cnt_ena = sbuf_cnt_clr | sbuf_cnt_incr; assign sbuf_cnt_nxt = ({ROWBUF_IDX_W{sbuf_cnt_clr }} & {ROWBUF_IDX_W{1'b0}}) | ({ROWBUF_IDX_W{sbuf_cnt_incr}} & (sbuf_cnt_r + 1'b1) ) ; sirv_gnrl_dfflr #(ROWBUF_IDX_W) sbuf_cnt_dfflr (sbuf_cnt_ena, sbuf_cnt_nxt, sbuf_cnt_r, nice_clk, nice_rst_n); // nice_rsp_valid wait for nice_icb_rsp_valid in SBUF assign nice_rsp_valid_sbuf = state_is_sbuf & sbuf_cnt_last & nice_icb_rsp_valid; wire [ROWBUF_IDX_W-1:0] sbuf_cmd_cnt_r; wire [ROWBUF_IDX_W-1:0] sbuf_cmd_cnt_nxt; wire sbuf_cmd_cnt_clr; wire sbuf_cmd_cnt_incr; wire sbuf_cmd_cnt_ena; wire sbuf_cmd_cnt_last; assign sbuf_cmd_cnt_last = (sbuf_cmd_cnt_r == clonum); assign sbuf_cmd_cnt_clr = sbuf_icb_rsp_hsked_last; assign sbuf_cmd_cnt_incr = sbuf_icb_cmd_hsked & ~sbuf_cmd_cnt_last; assign sbuf_cmd_cnt_ena = sbuf_cmd_cnt_clr | sbuf_cmd_cnt_incr; assign sbuf_cmd_cnt_nxt = ({ROWBUF_IDX_W{sbuf_cmd_cnt_clr }} & {ROWBUF_IDX_W{1'b0}}) | ({ROWBUF_IDX_W{sbuf_cmd_cnt_incr}} & (sbuf_cmd_cnt_r + 1'b1) ) ; sirv_gnrl_dfflr #(ROWBUF_IDX_W) sbuf_cmd_cnt_dfflr (sbuf_cmd_cnt_ena, sbuf_cmd_cnt_nxt, sbuf_cmd_cnt_r, nice_clk, nice_rst_n); // nice_icb_cmd_valid sets when sbuf_cmd_cnt_r is not full in SBUF assign nice_icb_cmd_valid_sbuf = (state_is_sbuf & (sbuf_cmd_cnt_r <= clonum) & (sbuf_cnt_r != clonum));,详细解释一下这段代码

这段代码是一个 Verilog 文件中的部分代码。它定义了一些逻辑电路中使用的信号,这些信号用于控制和监视电路的状态。这段代码的功能是实现一个带有计数器的缓冲区,用于存储和处理来自外部接口的数据。 具体来说,这段代码定义了以下信号: - sbuf_cnt_r:缓冲区中当前存储的数据数量,使用 ROWBUF_IDX_W 位的无符号整数表示。 - sbuf_cnt_nxt:下一个时钟周期中 sbuf_cnt_r 的值,同样是 ROWBUF_IDX_W 位的无符号整数。 - sbuf_cnt_clr:用于清空计数器的信号,当它被置为 1 时,sbuf_cnt_r 被重置为 0。 - sbuf_cnt_incr:用于增加计数器的信号,当它被置为 1 时,sbuf_cnt_r 的值加 1。 - sbuf_cnt_ena:用于使能计数器的信号,当它被置为 1 时,计数器根据 sbuf_cnt_clr 和 sbuf_cnt_incr 的状态进行重置或增加。 - sbuf_cnt_last:用于指示缓冲区是否已满的信号,当 sbuf_cnt_r 的值等于 clonum 时,它被置为 1。 - sbuf_icb_cmd_hsked:用于控制向外部接口发送数据请求的信号,当它被置为 1 时,表示可以发送数据请求。 - sbuf_icb_rsp_hsked:用于控制从外部接口接收数据响应的信号,当它被置为 1 时,表示可以接收数据响应。 - nice_rsp_valid_sbuf:用于指示是否可以从缓冲区中读取数据的信号,当缓冲区已满且接收到数据响应时,它被置为 1。 - nice_icb_cmd_valid_sbuf:用于指示是否可以向缓冲区中写入数据的信号,当缓冲区未满且可以发送数据请求时,它被置为 1。 - sbuf_cmd_cnt_r:用于记录缓冲区中当前存储的数据请求数量,同样是 ROWBUF_IDX_W 位的无符号整数。 - sbuf_cmd_cnt_nxt:下一个时钟周期中 sbuf_cmd_cnt_r 的值,同样是 ROWBUF_IDX_W 位的无符号整数。 - sbuf_cmd_cnt_clr:用于清空数据请求计数器的信号,当它被置为 1 时,sbuf_cmd_cnt_r 被重置为 0。 - sbuf_cmd_cnt_incr:用于增加数据请求计数器的信号,当它被置为 1 时,sbuf_cmd_cnt_r 的值加 1。 - sbuf_cmd_cnt_ena:用于使能数据请求计数器的信号,当它被置为 1 时,数据请求计数器根据 sbuf_cmd_cnt_clr 和 sbuf_cmd_cnt_incr 的状态进行重置或增加。 - sbuf_cmd_cnt_last:用于指示数据请求缓冲区是否已满的信号,当 sbuf_cmd_cnt_r 的值等于 clonum 时,它被置为 1。 这段代码还使用了 Verilog 中的一些逻辑运算符和模块实例化语句,用于实现上述信号的计算和更新。其中,sirv_gnrl_dfflr 是一个模块实例,用于实现一个数据触发器,用于存储和更新计数器的值。这个模块接受 sbuf_cnt_ena 或 sbuf_cmd_cnt_ena 作为时钟输入,sbuf_cnt_nxt 或 sbuf_cmd_cnt_nxt 作为数据输入,sbuf_cnt_r 或 sbuf_cmd_cnt_r 作为数据输出。这个模块还接受 nice_clk 和 nice_rst_n 作为时钟和复位信号,用于控制触发器的工作状态。 总体来说,这段代码实现了一个用于处理数据请求和响应的缓冲区,通过计数器来控制缓冲区的状态和数据的访问。这个缓冲区可以在逻辑电路中被复用,并可以根据具体的应用场景进行定制。

哪行实现了乘法?wire [E203_XLEN-1:0] rowprod_acc_r;wire [E203_XLEN-1:0] rowprod_acc_nxt;wire [E203_XLEN-1:0] rowprod_acc_multiplier;wire rowprod_acc_ena;wire rowprod_acc_set;wire rowprod_acc_flg;wire nice_icb_cmd_valid_rowprod;wire [E203_XLEN-1:0] rowprod_res;assign rowprod_acc_set = rcv_data_buf_valid & (rcv_data_buf_idx == {ROWBUF_IDX_W{1'b0}});assign rowprod_acc_flg = rcv_data_buf_valid & (rcv_data_buf_idx != {ROWBUF_IDX_W{1'b0}});assign rowprod_acc_multiplier = rcv_data_buf & rowprod_acc_r;assign rowprod_acc_ena = rowprod_acc_set | rowprod_acc_flg;assign rowprod_acc_nxt = ({E203_XLEN{rowprod_acc_set}} & rcv_data_buf) | ({E203_XLEN{rowprod_acc_flg}} & rowprod_acc_multiplier);sirv_gnrl_dfflr #(`E203_XLEN) rowprod_acc_dfflr (rowprod_acc_ena, rowprod_acc_nxt, rowprod_acc_r, nice_clk, nice_rst_n);assign rowprod_done = state_is_rowprod & nice_rsp_hsked;assign rowprod_res = rowprod_acc_r;assign nice_rsp_valid_rowprod = state_is_rowprod & (rcv_data_buf_idx == clonum) & ~rowprod_acc_flg;assign nice_icb_cmd_valid_rowprod = state_is_rowprod & (rcv_data_buf_idx < clonum) & ~rowprod_acc_flg;

这段代码是使用 Verilog HDL 实现的,并且涉及乘法运算。具体实现的是一个行乘积器(rowprod_acc),其中包括乘法器(rowprod_acc_multiplier)和累加器(rowprod_acc_r)。在代码中,通过 assign 语句将输入数据(rcv_data_buf)和累加器的结果进行乘法运算,并将结果存储在 rowprod_acc_multiplier 中。然后使用 rowprod_acc_r 进行累加操作,并将结果存储在 rowprod_acc_r 中。最后,通过 assign 语句将 rowprod_acc_r 的值赋给 rowprod_res,作为行乘积器的输出。

相关推荐

for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。在这个算法中取消对队列积压的考虑该怎么修改

for i in range(N): arrival_lambda[i] = 1 + 0.1 * i for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。 # 存储最大结果 Obj[i_idx],rate[i_idx,:],energy[i_idx,:] = r_list[k_idx_his[-1]]怎么修改代码使得队列Q、Y变化且代码不考虑队列积压

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

shumaguan.rar

shumaguan.rar
recommend-type

信捷MP3系列步进电机CAD图纸.zip

信捷MP3系列步进电机CAD图纸
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依