用python详细实现gan网络
时间: 2023-06-03 10:03:41 浏览: 276
好的,GAN网络是生成对抗网络,可以用来生成新的数据样本。下面是用Python详细实现GAN网络的步骤:
1.导入必要的库
```
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten, Reshape
from keras.layers import Conv2D, Conv2DTranspose
from keras.layers import LeakyReLU, Dropout
from keras.optimizers import Adam
```
2.定义超参数
```
# 图像大小
img_rows = 28
img_cols = 28
channels = 1
# 输入图片的形状
img_shape = (img_rows, img_cols, channels)
# 生成器隐变量的维度
z_dim = 100
```
3.编写生成器模型
```
def build_generator(img_shape, z_dim):
model = Sequential()
model.add(Dense(128 * 7 * 7, input_dim=z_dim))
model.add(LeakyReLU(alpha=0.01))
model.add(Reshape((7, 7, 128)))
model.add(Conv2DTranspose(64, kernel_size=3, strides=2, padding='same'))
model.add(LeakyReLU(alpha=0.01))
model.add(Conv2DTranspose(1, kernel_size=3, strides=2, padding='same', activation='tanh'))
return model
```
4.编写判别器模型
```
def build_discriminator(img_shape):
model = Sequential()
model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=img_shape, padding='same'))
model.add(LeakyReLU(alpha=0.01))
model.add(Dropout(0.3))
model.add(Conv2D(64, kernel_size=3, strides=2, padding='same'))
model.add(LeakyReLU(alpha=0.01))
model.add(Dropout(0.3))
model.add(Conv2D(128, kernel_size=3, strides=2, padding='same'))
model.add(LeakyReLU(alpha=0.01))
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
return model
```
5.编写GAN网络
```
def build_gan(generator, discriminator):
model = Sequential()
model.add(generator)
model.add(discriminator)
return model
```
6.定义优化器和损失函数
```
# 优化器
optimizer = Adam(0.0002, 0.5)
# 损失函数
loss = 'binary_crossentropy'
```
7.编译GAN网络
```
# 构建生成器和判别器
generator = build_generator(img_shape, z_dim)
discriminator = build_discriminator(img_shape)
# 构建GAN网络
gan = build_gan(generator, discriminator)
# 编译GAN网络
discriminator.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])
gan.compile(loss=loss, optimizer=optimizer)
```
8.训练GAN网络
```
# 定义训练数据标签
real_labels = np.ones((batch_size, 1))
fake_labels = np.zeros((batch_size, 1))
# 开始训练
for epoch in range(epochs):
# 生成随机噪声
z = np.random.normal(0, 1, (batch_size, z_dim))
# 生成假的图片
fake_images = generator.predict(z)
# 随机选择真实图片
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_images = X_train[idx]
# 训练判别器
d_loss_real = discriminator.train_on_batch(real_images, real_labels)
d_loss_fake = discriminator.train_on_batch(fake_images, fake_labels)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# 训练生成器
z = np.random.normal(0, 1, (batch_size, z_dim))
g_loss = gan.train_on_batch(z, real_labels)
```
以上就是用Python详细实现GAN网络的步骤。
阅读全文