基于rrt三维路径规划代码
时间: 2023-10-26 22:08:18 浏览: 110
RRT(Rapidly-exploring Random Trees)是一种常见的路径规划算法之一,它能够在高维空间中快速生成一颗树,并且在树上搜索出一条从起点到终点的路径。在三维空间中,RRT算法也被广泛应用于机器人路径规划、航空器路径规划等领域。
以下是一个基于RRT算法的三维路径规划代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
class RRT:
def __init__(self, start, goal, obstacles, step_size, max_iter):
self.start = start
self.goal = goal
self.obstacles = obstacles
self.step_size = step_size
self.max_iter = max_iter
self.vertices = [start]
self.edges = []
self.dim = len(start)
self.fig = plt.figure()
self.ax = self.fig.add_subplot(111, projection='3d')
self.ax.set_xlim3d(-10, 10)
self.ax.set_ylim3d(-10, 10)
self.ax.set_zlim3d(-10, 10)
self.ax.set_xlabel('X')
self.ax.set_ylabel('Y')
self.ax.set_zlabel('Z')
self.ax.scatter(start[0], start[1], start[2], c='g', marker='o')
self.ax.scatter(goal[0], goal[1], goal[2], c='r', marker='o')
for obstacle in obstacles:
self.ax.scatter(obstacle[0], obstacle[1], obstacle[2], c='k', marker='x')
def run(self):
for i in range(self.max_iter):
q_rand = np.random.rand(self.dim) * 20 - 10
q_near = self.nearest(q_rand)
q_new = self.steer(q_near, q_rand)
if self.collision_free(q_near, q_new):
self.vertices.append(q_new)
self.edges.append((q_near, q_new))
self.ax.plot([q_near[0], q_new[0]], [q_near[1], q_new[1]], [q_near[2], q_new[2]], c='b')
if np.linalg.norm(q_new - self.goal) < self.step_size:
self.vertices.append(self.goal)
self.edges.append((q_new, self.goal))
self.ax.plot([q_new[0], self.goal[0]], [q_new[1], self.goal[1]], [q_new[2], self.goal[2]], c='b')
return
def nearest(self, q_rand):
distances = [np.linalg.norm(q_rand - v) for v in self.vertices]
return self.vertices[np.argmin(distances)]
def steer(self, q_near, q_rand):
direction = q_rand - q_near
length = np.linalg.norm(direction)
if length > self.step_size:
direction = direction / length * self.step_size
return q_near + direction
def collision_free(self, q_near, q_new):
for obstacle in self.obstacles:
distance = np.linalg.norm(np.cross(obstacle - q_near, obstacle - q_new)) / np.linalg.norm(q_new - q_near)
if distance < 1.0:
return False
return True
def visualize(self):
plt.show()
if __name__ == '__main__':
start = np.array([-5, -5, -5])
goal = np.array([5, 5, 5])
obstacles = [np.array([0, 0, 0])]
rrt = RRT(start, goal, obstacles, 0.5, 1000)
rrt.run()
rrt.visualize()
```
在这个示例中,我们定义了一个RRT类,它包含了起点、终点、障碍物、步长、最大迭代次数、顶点和边等属性,以及一些方法,例如nearest、steer、collision_free和visualize等。
在run方法中,我们迭代生成随机点,并找到最近的顶点,然后在从最近顶点到随机点的方向上前进一步,生成一个新的顶点。如果新的顶点与最近顶点之间没有障碍物,则将新的顶点添加到树中,并将最近顶点和新的顶点之间的边添加到边列表中。
在collision_free方法中,我们检查最近顶点和新顶点之间是否有障碍物。这里我们假设障碍物为球形,因此使用球面与线段的距离公式来检查是否有碰撞。
最后,我们使用matplotlib库可视化生成的树和路径。
阅读全文