yolov9计算fps的脚本
时间: 2024-10-26 12:01:54 浏览: 33
SJTU AI1101(原AI001) 大作业-基于python和yolov5实现的简单FPS类辅助瞄准.zip
YOLOv9(You Only Look Once Version 9)是一种基于深度学习的对象检测算法,为了计算FPS(Frames Per Second,每秒帧数),你需要一个用于监控视频流并测量处理速度的脚本。这个脚本通常会涉及视频读取、模型推理以及计时的部分。
以下是一个简单的Python脚本示例,它使用OpenCV库来读取视频,YOLOv9模型进行预测,并计算FPS:
```python
import cv2
import time
# 加载YOLOv9模型
net = cv2.dnn.readNetFromDarknet('yolov9.cfg', 'yolov9.weights')
# 视频源(替换为你想要测试的视频路径)
video_capture = cv2.VideoCapture('your_video.mp4')
# 初始化帧开始时间
start_time = time.time()
while True:
# 读取视频一帧
ret, frame = video_capture.read()
# 如果无法读取帧,可能是到了视频结尾
if not ret:
break
# 进行前向推理
start_inference = time.time()
blob = cv2.dnn.blobFromImage(frame, 1 / 255, (640, 640), [0, 0, 0], 1)
net.setInput(blob)
output = net.forward()
end_inference = time.time()
# FPS计算
current_time = time.time()
fps = 1 / (current_time - start_time)
# 更新FPS并显示在图像上
if start_time == 0:
start_time = current_time
else:
start_time = current_time
print(f"FPS: {fps:.2f}")
# 显示处理后的帧
cv2.imshow('YOLOv9 Detection', frame)
key = cv2.waitKey(1) & 0xFF
# 如果按下q键退出
if key == ord('q'):
break
# 关闭资源
video_capture.release()
cv2.destroyAllWindows()
```
阅读全文