inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
时间: 2024-01-18 08:02:40 浏览: 115
这段代码是用来计算两个矩形框的相交区域左上角点的坐标的。具体来说,`boxes1[:, None, :2]`表示将第一个矩形框的左上角点坐标沿着新的维度扩展为`(N1, 1, 2)`,其中`N1`表示第一个矩形框的数量。`boxes2[:, :2]`则表示提取第二个矩形框的左上角点坐标,并将其广播为`(1, N2, 2)`,其中`N2`表示第二个矩形框的数量。这样,两个矩形框的左上角点坐标就被扩展为了`(N1, N2, 2)`。接着,`torch.max`函数对这些坐标进行逐元素比较,并返回逐元素的最大值,即两个矩形框的相交区域左上角点的坐标。
相关问题
def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union
这段代码是一个计算两个框(boxes)之间的IoU(Intersection over Union)的函数。IoU是用来衡量两个框的重叠程度的指标,范围在0到1之间,值越接近1表示两个框的重叠程度越高。
代码中的`boxes1`和`boxes2`分别表示两组框的坐标信息。首先,通过调用`box_area`函数分别计算了两组框的面积,分别存储在`area1`和`area2`中。
然后,通过使用`torch.max`函数计算了两组框左上角坐标的最大值,再使用`torch.min`函数计算了两组框右下角坐标的最小值。这样就得到了两组框的左上角和右下角坐标的交集区域,存储在`lt`和`rb`中。
接下来,通过计算交集区域的宽度和高度,即`(rb - lt).clamp(min=0)`,得到了交集区域的宽度和高度,存储在`wh`中。
然后,通过计算交集区域的面积,即`wh[:, :, 0] * wh[:, :, 1]`,得到了交集区域的面积,存储在`inter`中。
最后,通过计算并集面积,即`area1[:, None] + area2 - inter`,得到了并集的面积,存储在`union`中。
最后一步,通过将交集面积除以并集面积,即`inter / union`,得到了最终的IoU值,存储在`iou`中。
函数返回了两个值,分别是IoU值和并集面积。
解析代码:img = cv2.imread(img_name) print(img_name) showimg = img with torch.no_grad(): img = letterbox(img, new_shape=self.opt.img_size)[0] # Convert # BGR to RGB, to 3x416x416 img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = self.model(img, augment=self.opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, agnostic=self.opt.agnostic_nms) print(pred) # Process detections for i, det in enumerate(pred): if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords( img.shape[2:], det[:, :4], showimg.shape).round() for *xyxy, conf, cls in reversed(det): label = '%s %.2f' % (self.names[int(cls)], conf) name_list.append(self.names[int(cls)]) plot_one_box(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=10) cv2.imwrite('prediction.jpg', showimg) self.result = cv2.cvtColor(showimg, cv2.COLOR_BGR2BGRA) self.result = cv2.resize( self.result, (640, 480), interpolation=cv2.INTER_AREA) self.QtImg = QtGui.QImage( self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32) self.label.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))
这段代码主要是进行目标检测的推理过程,并将检测结果展示在界面上。
首先,使用OpenCV读取图片,然后对图片进行预处理,包括缩放、转换颜色空间、转换数据类型等。然后,将处理后的图片输入模型进行推理,得到检测结果,再对结果进行非极大值抑制,去除重复的检测框。最后,将检测结果绘制在原图上,保存展示图片,并将展示图片转换为Qt中可以显示的QImage格式,并在界面上展示。
阅读全文