STM32 ADC 采样 正弦波 代码

时间: 2024-02-09 09:41:51 浏览: 185
下面是一个基于STM32的ADC采集正弦波的示例代码: 首先,需要配置ADC模块的参数,包括采样通道、采样时间、采样时钟等。在此示例中,我们使用PA0引脚作为ADC采样通道,采样时间为15个时钟周期,采样时钟为PCLK2/2。 ``` // Configure ADC ADC_InitTypeDef ADC_InitStruct; ADC_CommonInitTypeDef ADC_CommonInitStruct; ADC_CommonInitStruct.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStruct.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStruct.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStruct.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStruct); ADC_InitStruct.ADC_Resolution = ADC_Resolution_12b; ADC_InitStruct.ADC_ScanConvMode = DISABLE; ADC_InitStruct.ADC_ContinuousConvMode = ENABLE; ADC_InitStruct.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStruct); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles); ADC_Cmd(ADC1, ENABLE); ``` 接下来,我们可以使用TIM2定时器来生成正弦波信号。在此示例中,我们使用PA1引脚输出正弦波信号,TIM2定时器的周期为1000个时钟周期,即1kHz的频率。为了产生正弦波,我们使用一个256个点的正弦波表,每个点的值为-1到1之间的浮点数。 ``` // Configure TIM2 TIM_TimeBaseInitTypeDef TIM_InitStruct; GPIO_InitTypeDef GPIO_InitStruct; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_TIM2); TIM_TimeBaseStructInit(&TIM_InitStruct); TIM_InitStruct.TIM_Period = 1000; TIM_InitStruct.TIM_Prescaler = 84; TIM_InitStruct.TIM_ClockDivision = 0; TIM_InitStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_InitStruct); TIM_Cmd(TIM2, ENABLE); // Generate sine wave float sine_table[256] = {0.0000, 0.0245, 0.0491, 0.0736, 0.0980, 0.1224, 0.1467, 0.1710, 0.1951, 0.2191, 0.2429, 0.2667, 0.2903, 0.3137, 0.3369, 0.3599, 0.3827, 0.4052, 0.4276, 0.4496, 0.4714, 0.4929, 0.5141, 0.5350, 0.5556, 0.5758, 0.5957, 0.6152, 0.6344, 0.6532, 0.6716, 0.6895, 0.7071, 0.7242, 0.7409, 0.7572, 0.7730, 0.7883, 0.8032, 0.8176, 0.8315, 0.8449, 0.8577, 0.8701, 0.8819, 0.8932, 0.9039, 0.9142, 0.9239, 0.9330, 0.9415, 0.9495, 0.9569, 0.9638, 0.9700, 0.9757, 0.9808, 0.9853, 0.9892, 0.9925, 0.9952, 0.9973, 0.9988, 0.9997, 1.0000, 0.9997, 0.9988, 0.9973, 0.9952, 0.9925, 0.9892, 0.9853, 0.9808, 0.9757, 0.9700, 0.9638, 0.9569, 0.9495, 0.9415, 0.9330, 0.9239, 0.9142, 0.9039, 0.8932, 0.8819, 0.8701, 0.8577, 0.8449, 0.8315, 0.8176, 0.8032, 0.7883, 0.7730, 0.7572, 0.7409, 0.7242, 0.7071, 0.6895, 0.6716, 0.6532, 0.6344, 0.6152, 0.5957, 0.5758, 0.5556, 0.5350, 0.5141, 0.4929, 0.4714, 0.4496, 0.4276, 0.4052, 0.3827, 0.3599, 0.3369, 0.3137, 0.2903, 0.2667, 0.2429, 0.2191, 0.1951, 0.1710, 0.1467, 0.1224, 0.0980, 0.0736, 0.0491, 0.0245, 0.0000, -0.0245, -0.0491, -0.0736, -0.0980, -0.1224, -0.1467, -0.1710, -0.1951, -0.2191, -0.2429, -0.2667, -0.2903, -0.3137, -0.3369, -0.3599, -0.3827, -0.4052, -0.4276, -0.4496, -0.4714, -0.4929, -0.5141, -0.5350, -0.5556, -0.5758, -0.5957, -0.6152, -0.6344, -0.6532, -0.6716, -0.6895, -0.7071, -0.7242, -0.7409, -0.7572, -0.7730, -0.7883, -0.8032, -0.8176, -0.8315, -0.8449, -0.8577, -0.8701, -0.8819, -0.8932, -0.9039, -0.9142, -0.9239, -0.9330, -0.9415, -0.9495, -0.9569, -0.9638, -0.9700, -0.9757, -0.9808, -0.9853, -0.9892, -0.9925, -0.9952, -0.9973, -0.9988, -0.9997, -1.0000, -0.9997, -0.9988, -0.9973, -0.9952, -0.9925, -0.9892, -0.9853, -0.9808, -0.9757, -0.9700, -0.9638, -0.9569, -0.9495, -0.9415, -0.9330, -0.9239, -0.9142, -0.9039, -0.8932, -0.8819, -0.8701, -0.8577, -0.8449, -0.8315, -0.8176, -0.8032, -0.7883, -0.7730, -0.7572, -0.7409, -0.7242, -0.7071, -0.6895, -0.6716, -0.6532, -0.6344, -0.6152, -0.5957, -0.5758, -0.5556, -0.5350, -0.5141, -0.4929, -0.4714, -0.4496, -0.4276, -0.4052, -0.3827, -0.3599, -0.3369, -0.3137, -0.2903, -0.2667, -0.2429, -0.2191, -0.1951, -0.1710, -0.1467, -0.1224, -0.0980, -0.0736, -0.0491, -0.0245}; uint32_t sine_index = 0; while (1) { // Set duty cycle of TIM2 to generate sine wave uint16_t duty_cycle = (sine_table[sine_index] + 1) * 500; TIM2->CCR1 = duty_cycle; // Start ADC conversion ADC_SoftwareStartConv(ADC1); while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); // Get ADC value and convert to voltage uint16_t adc_value = ADC_GetConversionValue(ADC1); float voltage = adc_value * 3.3 / 4096; // Increment sine wave index and wrap around at 256 sine_index++; if (sine_index >= 256) sine_index = 0; } ``` 在主循环中,我们不断地更新TIM2的占空比来输出正弦波信号,并且在每个周期开始时启动ADC转换。一旦转换完成,我们可以获取ADC值并将其转换为电压值,然后可以对电压值进行进一步处理或显示。
阅读全文

相关推荐

最新推荐

recommend-type

合理选择高速ADC实现欠采样

为了避免这种情况,通常会在ADC前添加一个抗混叠滤波器,以滤除高于采样频率一半的信号成分,确保混叠不会影响感兴趣的信号。 【次采样与信号处理】 次采样(Subsampling)利用混叠现象的特性,通过设计系统来利用...
recommend-type

STM32实现IIR工频陷波器

在STM32中,这通常通过配置定时器来触发ADC采样来实现,以设定合适的采样频率。例如,如果滤波器的采样率为1000Hz,那么定时器应配置为每毫秒触发一次ADC采样。 MATLAB中的仿真可以帮助验证滤波器设计的有效性。在...
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32 HAL库深度解析:新手到高手的进阶之路

![STM32 HAL库深度解析:新手到高手的进阶之路](https://img-blog.csdnimg.cn/20210526014326901.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2xjemRr,size_16,color_FFFFFF,t_70) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df
recommend-type

如何使用pyCUDA库在GPU上进行快速傅里叶变换(FFT)以加速线性代数运算?请提供具体的代码实现。

当你希望利用GPU的并行计算能力来加速线性代数运算,特别是快速傅里叶变换(FFT)时,pyCUDA是一个非常强大的工具。它允许开发者通过Python语言来编写CUDA代码,执行复杂的GPU计算任务。通过学习《Python与pyCUDA:GPU并行计算入门与实战》这一资料,你可以掌握如何使用pyCUDA进行GPU编程和加速计算。 参考资源链接:[Python与pyCUDA:GPU并行计算入门与实战](https://wenku.csdn.net/doc/6401ac00cce7214c316ea46b?spm=1055.2569.3001.10343) 具体到FFT的实现,你需要首先确保已经