float a =0x0123什么意思

时间: 2024-05-20 21:13:52 浏览: 4
这是将十六进制数0x0123转换为float类型,并赋值给变量a。在C语言中,我们可以使用各种进制表示数字,包括十进制、八进制和十六进制。0x0123是一个十六进制数,它表示的是十进制的291。当我们将其赋值给一个float类型的变量a时,编译器会将其转换为float类型的数值,即2.91e+02。因为float类型只能表示有限的数值,所以在进行转换时可能会有精度损失。
相关问题

void manage_key4(void) //mode key function { if(Modeindex==0) { Modeindex=Modeindex+1; Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=0x00; Display_num_buffer[3]=Display_num_data[0]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x00; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); if(Mode_flag==0) Mode_flag=1; else { Mode_flag=0; Scalevalue.float_four_1byte[0]=HT93LC46_READ_ONE_BYTE(0x09); DELAY_TIMES(0x0A); Scalevalue.float_four_1byte[1]=HT93LC46_READ_ONE_BYTE(0x0A); DELAY_TIMES(0x0A); Scalevalue.float_four_1byte[2]=HT93LC46_READ_ONE_BYTE(0x0B); DELAY_TIMES(0x0A); Scalevalue.float_four_1byte[3]=HT93LC46_READ_ONE_BYTE(0x0C); DELAY_TIMES(0x0A); } } else if(Modeindex==1) { Modeindex=Modeindex+1; Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=0x00; Display_num_buffer[3]=Display_num_data[1]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x00; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); } else { Modeindex=0; Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=0x00; Display_num_buffer[3]=Display_num_data[2]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x00; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); } }

根据你提供的代码,`manage_key4()` 函数是用于处理模式切换的按键功能的。在函数中,你使用了一个 `Modeindex` 变量来追踪当前的模式。根据 `Modeindex` 的不同值,会执行不同的操作。 首先,如果 `Modeindex` 的值为0,会执行一系列操作。首先更新 `Display_num_buffer` 数组的元素以显示相应的数据,并调用 `HT1621_SUCCESSIVE_DISPLAY()` 函数来显示更新后的数据。然后会延迟一段时间。接着,会根据 `Mode_flag` 的值来判断操作。如果 `Mode_flag` 的值为0,会将其置为1。否则,会将其置为0,并从 `HT93LC46` 中读取一些数据并存储到 `Scalevalue.float_four_1byte` 数组中。 接下来,如果 `Modeindex` 的值为1,会执行一系列操作,类似于上面的步骤。 最后,如果 `Modeindex` 的值不是0也不是1,则将其重置为0,并执行一系列操作,类似于上述步骤。 以上是根据你提供的代码推断出的解释。如果还有其他细节或问题,请告诉我。

const int bufferSize = 8; void T_ck() { ExtSRAMInterface.ExMem_Write_Bytes(0x6008, cheku_FH_A, 8); // 发送请求返回立体车库当前层数 uint8_t receivedData[bufferSize]; // 定义用于保存接收数据的数组 // 等待接收完整的数据包 while (Serial.available() < bufferSize) { // 等待接收数据 } // 读取串口数据并保存到receivedData数组中 for (int i = 0; i < bufferSize; i++) { receivedData[i] = Serial.read(); } // 检查车库挡位协议是否匹配 if (receivedData[0] == 0x55 && receivedData[1] == 0x0D && receivedData[2] == 0x02 && receivedData[3] == 0x01) { // 提取车库挡位值并赋值给变量y uint8_t y = receivedData[4]; Serial.print(y); Serial.println("y"); // 判断车库挡位值并执行相应操作 switch (y) { case 0x01: Serial.println("当前车库挡位:一层"); break; case 0x02: Serial.println("当前车库挡位:二层"); break; case 0x03: Serial.println("当前车库挡位:三层"); break; case 0x04: Serial.println("当前车库挡位:四层"); break; default: Serial.println("无法确定当前车库挡位"); break; } // 检查主车挡位协议是否匹配 if (receivedData[0] == 0x55 && receivedData[1] == 0x02 && receivedData[2] == 0xAA && receivedData[6] == 0xBB) { // 提取距离值并赋值给变量h uint8_t h = receivedData[3]; // 提取主车挡位值并赋值给变量n uint8_t n = receivedData[4]; Serial.println(h); Serial.println(n); // 计算公式 ((n*y+h)^4)/100 的结果 float result = pow((n * y + h), 4) / 100.0; uint8_t x = static_cast<uint8_t>(result); // 计算结果赋值给x Serial.println(result); // 将计算结果x发送出去 uint8_t ces[8] = {0x55, 0x01, 0x00, 0x00, 0x00, x, 0x08,提取的档位没反应

根据代码,我看到你在发送一个请求给车库,请求返回当前的层数信息。然后你等待串口接收到完整的数据包,将数据保存到receivedData数组中。之后你检查车库挡位协议是否匹配,如果匹配则提取车库挡位值并赋值给变量y,然后根据不同的车库挡位值执行相应的操作。接着你检查主车挡位协议是否匹配,如果匹配则提取距离值和主车挡位值,计算公式 ((n*y+h)^4)/100 的结果,并将结果赋值给变量x。最后,你将计算结果x发送出去。 根据你的描述,可能是提取的档位没有反应导致问题。你需要检查你的代码,确保提取的档位值正确,并且在执行相应操作时没有出错。同时,你也需要确保你发送给车库的请求是正确的,并且车库返回的数据包格式也是正确的。

相关推荐

#include<avr/io.h> #include<avr/interrupt.h> #include <util/delay.h> #define delay_ms(x) _delay_ms(x) const unsigned char disp[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f, 0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00}; unsigned char ledbuf[]={0x00,0x00,0x00,0x00}; unsigned int i; unsigned int sum; unsigned int y=0; int k[10]; void disp_init(void) { OCR1A = 4999; TCCR1A = 0x00; TCCR1B = (1 << WGM12); //CTC模式 TCCR1B |= (1 << CS11); //8分频 TIMSK |= (1 << OCIE1A); //开比较匹配中断A } void display(char num,char pos) { SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0); PORTB &= 0x0F; //关位选 PORTB&=~(1<<0); SPDR=num; while(0==(SPSR&0X80)); PORTB|=(1<<0); PORTB |= 1<<(7-pos); } ISR(TIMER1_COMPA_vect) { static unsigned char k=0; k=(++k)%4; display(ledbuf[k],k); PORTA=ledbuf[k]; } void io_init(void) //IO初始化 { DDRB=0xFF; PORTB=0xF8; DDRC=0xFF; PORTC&=~(1<<7); //74HC595使能 DDRD=0x00; //PORTD=0xFF;//PD口8个按键端口输入,上拉 } void get(void) { //ADMUX=(0<<REFS1)|(1<<REFS0)|(1<<MUX1); ADMUX=(1<<REFS0); ADCSRA=(1<<ADEN) |(1<<ADPS0)|(1<<ADPS1)|(1<<ADPS0); ADCSRA|=(1<<ADSC); while(!(ADCSRA&(1<<ADIF))); ADCSRA|=(1<<ADIF); ADCSRA&=~(1<<ADEN); k[y]=ADC; y=y+1; if(y>=9) { for(y=0;y<=9;y++) { sum=k[y]+sum;} y=0; i=sum/9; sum=0; float v=i*5.0/1024; int a=(int)v; int b=(int)((v-a)*1000); ledbuf[0] = disp[a]|0x80; ledbuf[1] = disp[b/100]; ledbuf[2] = disp[(b%100)/10]; ledbuf[3] = disp[b%10]; } } void main() { io_init(); disp_init(); sei(); while (1) { get(); delay_ms(100); } }什么意思逐句解释

#include "hal_defs.h" #include "hal_cc8051.h" #include "hal_int.h" #include "hal_mcu.h" #include "hal_board.h" #include "hal_led.h" #include "hal_rf.h" #include "basic_rf.h" #include "hal_uart.h" #include <stdio.h> #include <string.h> #include <stdarg.h> /*****点对点通讯地址设置******/ #define RF_CHANNEL 23 // 频道 11~26 #define PAN_ID 0xAA22 //网络id #define MY_ADDR 0xAAAA //本机模块地址 #define SEND_ADDR 0xBBBB //发送地址 #define LED1 P1_0 #define LED2 P1_1 /**************************************************/ static basicRfCfg_t basicRfConfig; // 无线RF初始化 void ConfigRf_Init(void) { basicRfConfig.panId = PAN_ID; basicRfConfig.channel = RF_CHANNEL; basicRfConfig.myAddr = MY_ADDR; basicRfConfig.ackRequest = TRUE; while(basicRfInit(&basicRfConfig) == FAILED); basicRfReceiveOn(); } void initIO(void) { P1SEL &=~0x03; P1DIR |=0x03; LED1=1; LED2=1; } float getTemperature(void) { signed short int value; ADCCON3=(0x3E); ADCCON1 |=0x30; ADCCON1 |=0x40; while(!(ADCCON1 & 0x80)); value |=((int)ADCH<<6); if(value<0) value=0; return value*0.06229-311.43; } void getTemperature1(void) { char z; float avgTemp; unsigned char output[]=""; while(1) { LED1=1; avgTemp=getTemperature(); for(z=0;z<64;z++) { avgTemp +=getTemperature(); avgTemp=avgTemp/2; } output[0]=(unsigned char)(avgTemp)/10 + 48; output[1]=(unsigned char)(avgTemp)%10 + 48; output[2]='\0'; } } /********************MAIN************************/ void main(void) { halBoardInit();//选手不得在此函数内添加代码 ConfigRf_Init();//选手不得在此函数内添加代码 initIO(); uint8 a[128],c[128],len,output; while(1) { /* user code start */ len=halUartRxLen(); if(len>=2) { a[0]=len; halUartRead(&a[1],len); basicRfSendPacket(SEND_ADDR,a,len+1); } if(basicRfPacketIsReady()) { basicRfReceive(c,128,NULL); halUartWrite(&c[1],c[0]); if(c[1]==0xaa) { if(c[2]==0x01) { LED1=~LED1; LED2=LED2; } else if(c[2]==0x02) { LED2=~LED2; LED1=LED1; } else if(c[2]==0x03) { getTemperature1(); UART0SendString(output); UART0SendString("℃\t\r\n"); LED1=0; delay(2000); } { } } } /* user code end */ } }

#include<reg51.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit DQ=P3^7; sbit P2_0=P2^0; sbit k2=P2^2; sbit k4=P2^4; sbit k3=P2^3; uchar timp,F=0; float c; uchar a[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; uchar b[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; void delay5(uchar n) { do { _nop_(); _nop_(); _nop_(); n--; } while(n); } void init_DS18B20() { uchar x=0; DQ=0; delay5(120); DQ=1; delay5(16); delay5(80); } uchar readbyte() { uchar i=0; uchar date=0; for(i=8;i>0;i--) { DQ=0; delay5(1); DQ=1; date>>=1; if(DQ) date|=0x80; delay5(11); } return(date); } void writebyte(uchar dat) { uchar i=0; for(i=8;i>0;i--) { DQ=0; DQ=dat&0x01; delay5(12); DQ=1; dat>>=1; delay5(5); } } uchar retemp() { uchar a,b,tt; uint t; init_DS18B20(); writebyte(0xCC); writebyte(0x44); init_DS18B20(); writebyte(0xCC); writebyte(0xBE); a=readbyte(); b=readbyte(); t=b; t<<=8; t=t|a; if((t&0xf800)!=0xf800) { F=0; c=t*0.0625; tt=t*0.0625; timp=t*0.625-tt*10; } else { F=1; t=(~t)+1; c=t*0.0625; tt=t*0.0625; timp=t*0.625-tt*10; } return tt; } void main() { uchar i,temp; delay5(1000); while(1) { temp=retemp(); if(c>=25&&F==0) P2_0=0; else P2_0=1; for(i=0;i<15;i++) { k2=1;k3=1;k4=1; if(F==0) P0=a[temp/100]; else P0=a[10]; delay5(1000); // P2=0xfb;//11111011,0xfb k2=0;k3=1;k4=1; P0=a[temp%100/10]; delay5(1000); //P2=0xf7;//11110111,0xf7 k2=1;k3=0;k4=1; P0=b[temp%10]; delay5(1000); //P2=0xf3;//11110011,0xf3 k2=0;k3=0;k4=1; P0=a[timp]; delay5(1000); } if(c>=25&&F==0) P2_0=1; else P2_0=1; } }在这个代码的基础上利用串口把数据发送到电脑上的串口助手

最新推荐

recommend-type

基于springboot+vue+MySQL实现的在线考试系统+源代码+文档

web期末作业设计网页 基于springboot+vue+MySQL实现的在线考试系统+源代码+文档
recommend-type

318_面向物联网机器视觉的目标跟踪方法设计与实现的详细信息-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

FPGA Verilog 计算信号频率,基础时钟100Mhz,通过锁相环ip核生成200Mhz检测时钟,误差在10ns

结合等精度测量原理和原理示意图可得:被测时钟信号的时钟频率fx的相对误差与被测时钟信号无关;增大“软件闸门”的有效范围或者提高“标准时钟信号”的时钟频率fs,可以减小误差,提高测量精度。 实际闸门下被测时钟信号周期数为X,设被测信号时钟周期为Tfx,它的时钟频率fx = 1/Tfx,由此可得等式:X * Tfx = X / fx = Tx(实际闸门)。 其次,将两等式结合得到只包含各自时钟周期计数和时钟频率的等式:X / fx = Y / fs = Tx(实际闸门),等式变换,得到被测时钟信号时钟频率计算公式:fx = X * fs / Y。 最后,将已知量标准时钟信号时钟频率fs和测量量X、Y带入计算公式,得到被测时钟信号时钟频率fx。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、