import cv2 import numpy as np def hog(img): hog = cv2.HOGDescriptor((20,20),(8,8), (4,4),(8,8),9,1,-1,0,0.2,1,64,True) hog_descriptor=hog.compute(img) hog_descriptor=np.squeeze(hog_descriptor) return hog_descriptor img = cv2.imread((r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0) digits=[np.hsplit(row,100) for row in np.vsplit(img,50)] labels = np.repeat(np.arange(10),500)[:,np.newaxis] hogdata = [list(map(hog,row)) for row in digits] trainData = np.float32(hogdata).reshape(-1,144) svm = cv2.ml.SVM_create() #设置相关参数 svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, labels) #训练模型 #用绘图工具创建的手写数字5图像(大小为20*20)进行测试 test= cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\6.png') #打开图像test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result)) #用绘图工具创建的手写数字8图像(大小为20*20)进行测试 test= cv2.imread('d8.jpg',0) test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) #转换为测试数据 result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result))纠正代码

时间: 2024-03-05 20:50:32 浏览: 25
在您提供的代码中,有以下几处需要纠正的错误: 1. 第一行 `import cv2 import numpy as np` 应该改为两行代码: ``` import cv2 import numpy as np ``` 2. 第二行 `def hog(img):` 后面应该加上缩进。 3. 第三行 `hog = cv2.HOGDescriptor((20,20),(8,8), (4,4),(8,8),9,1,-1,0,0.2,1,64,True)`,其中参数的数量和顺序不对,应该改为: ``` hog = cv2.HOGDescriptor((20,20),(8,8),(4,4),(8,8),9,1,-1,0,0.2,True,64) ``` 4. 第四行 `hog_descriptor=hog.compute(img)`,缺少一个括号,应该改为: ``` hog_descriptor=hog.compute(img) ``` 5. 第五行 `hog_descriptor=np.squeeze(hog_descriptor)`,该行代码不需要缩进。 6. 第七行 `img = cv2.imread((r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0)`,`cv2.imread` 函数中的路径需要加上一个括号,应该改为: ``` img = cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0) ``` 7. 第八行 `digits=[np.hsplit(row,100) for row in np.vsplit(img,50)]`,该行代码不需要缩进。 8. 第九行 `labels = np.repeat(np.arange(10),500)[:,np.newaxis]`,该行代码不需要缩进。 9. 第十行 `hogdata = [list(map(hog,row)) for row in digits]`,该行代码不需要缩进。 10. 第十一行 `trainData = np.float32(hogdata).reshape(-1,144)`,该行代码不需要缩进。 11. 第十二行 `svm = cv2.ml.SVM_create() #设置相关参数`,该行代码不需要缩进。 12. 第十三行 `svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, labels)`,该行代码中的多个函数调用应该分别放在一行,且需要缩进。 13. 第十五行 `test= cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\6.png')`,该行代码不需要缩进。 14. 第十六行 `test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32)`,该行代码中的两个函数调用应该分别放在一行,且需要缩进。 15. 第十七行 `result = svm.predict(test_data)[1]`,该行代码不需要缩进。 16. 第十八行 `print('识别结果:',np.squeeze(result))`,该行代码不需要缩进。 17. 第二十行 `test= cv2.imread('d8.jpg',0)`,该行代码不需要缩进。 18. 第二十一行 `test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32)`,该行代码中的两个函数调用应该分别放在一行,且需要缩进。 19. 第二十二行 `result = svm.predict(test_data)[1]`,该行代码不需要缩进。 20. 第二十三行 `print('识别结果:',np.squeeze(result))`,该行代码不需要缩进。 纠正后的代码如下所示: ``` import cv2 import numpy as np def hog(img): hog = cv2.HOGDescriptor((20,20),(8,8),(4,4),(8,8),9,1,-1,0,0.2,True,64) hog_descriptor=hog.compute(img) hog_descriptor=np.squeeze(hog_descriptor) return hog_descriptor img = cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0) digits=[np.hsplit(row,100) for row in np.vsplit(img,50)] labels = np.repeat(np.arange(10),500)[:,np.newaxis] hogdata = [list(map(hog,row)) for row in digits] trainData = np.float32(hogdata).reshape(-1,144) svm = cv2.ml.SVM_create() svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, labels) test= cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\6.png',0) test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result)) test= cv2.imread('d8.jpg',0) test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result)) ```

相关推荐

import cv2 import numpy as np import os # 提取图像的HOG特征 def get_hog_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) return hog_features # 加载训练数据集 train_data = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128"] train_labels = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128\labels.txt"] num_samples = 681 for i in range(num_samples): img = cv2.imread(str(i).zfill(3)+'.jpg') hog_features = get_hog_features(image) hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) color_hist = cv2.calcHist([hsv_image], [0, 1], None, [180, 256], [0, 180, 0, 256]) color_features = cv2.normalize(color_hist, color_hist).flatten() train_data.append(hog_features) train_labels.append(labels[i]) # 训练SVM模型 svm = cv2.ml.SVM_create() svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels)) # 对测试图像进行分类 test_image = cv2.imread('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\maskslic2_roi.png', 0) test_features = get_hog_features(test_image) result = svm.predict(test_features.reshape(1,-1)) # 显示分割结果 result_image = np.zeros(test_image.shape, np.uint8) for i in range(test_image.shape[0]): for j in range(test_image.shape[1]): if result[i,j] == 1: result_image[i,j] = 255 cv2.imshow('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\Result.png', result_image) cv2.waitKey(0) cv2.destroyAllWindows()

from __future__ import print_function from imutils.object_detection import non_max_suppression from imutils import paths import numpy as np import argparse import imutils import cv2 ap = argparse.ArgumentParser() ap.add_argument("-i", "--images",required=True, help="path to images directory") winSize = (128,128) blockSize = (16,16) blockStride = (8,8) cellSize = (8,8) nbins = 9 hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins) defaultdetector=cv2.HOGDescriptor_getDefaultPeopleDetector() hog.setSVMDetector(defaultdetector) image_Path="./images" sig=0 for imagePath in paths.list_images(image_Path): #args["images"] image = cv2.imread(imagePath) # image = imutils.resize(image, width=min(400, image.shape[1])) image = imutils.resize(image, (128,128)) orig = image.copy() # (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4), # padding=(8, 8), scale=1.05) (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4), padding=(8, 8), scale=1.05) for (x, y, w, h) in rects: cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2) rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects]) pick = non_max_suppression(rects, probs=None, overlapThresh=0.65) for (xA, yA, xB, yB) in pick: cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) filename = imagePath[imagePath.rfind("/") + 1:] print("[INFO] {}: {} original boxes, {} after suppression".format( filename, len(rects), len(pick))) cv2.imwrite("./Saves/"+str(sig)+"orig.jpg",orig) cv2.imwrite("./Saves/"+str(sig)+"image.jpg",image) sig+=1改正以上代码

import cv2 import numpy as np # 提取图像的HOG特征 def get_hog_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) return hog_features # 加载训练数据集 train_data = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128"] train_labels = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128\labels.txt"] for i in range(num_samples): image = cv2.imread('image_'+str(i)+'.jpg', 0) hog_features = get_hog_features(image) hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) color_hist = cv2.calcHist([hsv_image], [0, 1], None, [180, 256], [0, 180, 0, 256]) color_features = cv2.normalize(color_hist, color_hist).flatten() train_data.append(hog_features) train_labels.append(labels[i]) # 训练SVM模型 svm = cv2.ml.SVM_create() svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels)) # 对测试图像进行分类 test_image = cv2.imread('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\maskslic2_roi.png', 0) test_features = get_hog_features(test_image) result = svm.predict(test_features.reshape(1,-1)) # 显示分割结果 result_image = np.zeros(test_image.shape, np.uint8) for i in range(test_image.shape[0]): for j in range(test_image.shape[1]): if result[i,j] == 1: result_image[i,j] = 255 cv2.imshow('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\Result.png', result_image) cv2.waitKey(0) cv2.destroyAllWindows()

最新推荐

recommend-type

2024年印度标定气体混合物市场机会及渠道调研报告-样本.docx

2024年印度标定气体混合物市场机会及渠道调研报告-样本
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。