根号(cosθ的平方加1)分之cosθ的不定积分,并且写上解题过程
时间: 2024-04-03 08:31:56 浏览: 249
这是一个比较典型的三角函数积分,可以通过换元法求解。
我们令u = cosθ,那么du = -sinθ dθ,于是原式可以变为:
∫(根号(cosθ的平方加1)/cosθ) dθ = -∫(根号(u的平方+1)/u) du
接下来,我们可以通过有理化的方式将被积函数中的根号去掉,具体过程如下:
- 将被积函数乘以(根号(u的平方+1)+u)/(根号(u的平方+1)+u),得到:
∫(根号(u的平方+1)/u) du + ∫du/(u根号(u的平方+1))
- 对第二个积分进行换元,令v = u的平方+1,那么dv = 2u du,于是有:
∫du/(u根号(u的平方+1)) = (1/2)∫dv/v^(1/2) = v^(1/2) + C = (u的平方+1)^(1/2) + C
综上所述,原式的解为:
-∫(根号(u的平方+1)/u) du + (u的平方+1)^(1/2) + C
将u = cosθ代入,并且把负号放到最前面,得到最终答案:
-∫(根号(cosθ的平方+1)/cosθ) dθ = -ln|cosθ+(cosθ的平方+1)^(1/2)| + (cosθ的平方+1)^(1/2) + C
阅读全文
相关推荐


















