npm run bulid:prod打包为什么会打的app.js很大,别人的就不是这样的

时间: 2024-04-06 15:35:12 浏览: 17
可能有多种原因导致打包后的app.js文件很大,以下是一些可能的原因: 1. 代码中有大量的注释和空格,这些注释和空格不会影响代码的功能,但会增加文件的大小。 2. 代码中有大量的重复代码,这些重复代码可以通过封装成函数或者组件来减少文件大小。 3. 使用了大量的第三方库或框架,这些库或框架可能包含了很多不必要的代码和功能,可以通过按需引入或者使用替代库来减少文件大小。 4. 代码中包含了大量的图片或者其他文件,这些文件可以通过压缩和优化来减小文件大小。 5. webpack的配置不够优化,例如没有启用代码压缩、文件压缩、tree shaking等功能。 如果你想减小打包后的文件大小,可以尝试以下方法: 1. 在代码提交之前,将所有的注释和空格去掉。 2. 将重复代码封装成函数或者组件。 3. 按需引入第三方库或者使用替代库。 4. 对图片和其他文件进行压缩和优化。 5. 优化webpack的配置,启用代码压缩、文件压缩、tree shaking等功能。
相关问题

/app目录下有 frontend文件夹,里面是前端代码以及docker-compose.yml文件 帮我在frontend写一个脚本,执行npm install 跟npm run build:prod 然后在frontend文件夹中的Dockerfile文件中执行该脚本,并且使用nginx转发npm run build:prod打包生成的dist里的内容,80端口 请帮我编写docker-compose.yml、Dockerfile以及脚本

好的,我帮你编写docker-compose.yml、Dockerfile以及脚本。 首先是docker-compose.yml文件内容如下: ```yaml version: '3' services: frontend: build: context: ./frontend dockerfile: Dockerfile ports: - 80:80 depends_on: - nginx nginx: image: nginx:latest ports: - 80:80 volumes: - ./frontend/dist:/usr/share/nginx/html ``` 接下来是Dockerfile文件内容如下: ```Dockerfile # 使用node镜像作为基础镜像 FROM node:14.17.0-alpine as build # 设置工作目录 WORKDIR /app # 将package.json和package-lock.json复制到工作目录 COPY package*.json ./ # 安装依赖 RUN npm install # 将所有文件复制到工作目录 COPY . . # 执行npm run build:prod命令 RUN npm run build:prod # 使用nginx镜像作为基础镜像 FROM nginx:latest # 将dist目录中的文件复制到nginx的默认静态文件目录 COPY --from=build /app/dist /usr/share/nginx/html # 暴露80端口 EXPOSE 80 # 容器启动时运行nginx命令 CMD ["nginx", "-g", "daemon off;"] ``` 最后是脚本(script.sh)内容如下: ```bash #!/bin/bash # 进入frontend目录 cd frontend # 安装依赖 npm install # 执行npm run build:prod npm run build:prod ``` 请确保在frontend文件夹下已经有package.json和package-lock.json文件,并且已经安装了npm和Docker。然后在frontend文件夹中执行以下命令: ```bash chmod +x script.sh ./script.sh ``` 这样脚本会执行npm install 和 npm run build:prod命令。 最后,在/app目录下执行以下命令启动服务: ```bash docker-compose up -d ``` 这样就完成了在frontend文件夹中执行npm install 和 npm run build:prod,并且使用nginx转发打包生成的dist目录内容的配置。

我不需要 # 使用node镜像作为基础镜像 FROM node:14.17.0-alpine as build # 设置工作目录 WORKDIR /app # 将package.json和package-lock.json复制到工作目录 COPY package*.json ./ # 安装依赖 RUN npm install # 将所有文件复制到工作目录 COPY . . # 执行npm run build:prod命令 RUN npm run build:prod 而是把脚本文件生成的dist给nginx

明白了,您希望将脚本生成的dist文件夹复制给nginx使用,而不是在Dockerfile中进行构建。那么我修改一下Dockerfile和脚本内容如下: Dockerfile内容如下: ```Dockerfile # 使用nginx镜像作为基础镜像 FROM nginx:latest # 将dist目录复制到nginx的默认静态文件目录 COPY dist /usr/share/nginx/html # 暴露80端口 EXPOSE 80 # 容器启动时运行nginx命令 CMD ["nginx", "-g", "daemon off;"] ``` 脚本(script.sh)内容如下: ```bash #!/bin/bash # 进入frontend目录 cd frontend # 安装依赖 npm install # 执行npm run build:prod命令 npm run build:prod # 复制dist目录到上级目录 cp -r dist ../dist ``` 这样,脚本会执行npm install和npm run build:prod,并将生成的dist文件夹复制到上级目录。然后,在/app目录下执行以下命令启动服务: ```bash docker-compose up -d ``` 这样就完成了将脚本生成的dist文件夹复制给nginx使用的配置。

相关推荐

我的代码跟docker-compose.yml文件放在/app目录下 /app/frontend存放前端代码 /app/backend存放后端代码 我想直接在/app/frontend直接install跟build再拷贝到容器内,如何实现 docker-compose.yml文件: version: '3' services: frontend: build: context: ./frontend dockerfile: Dockerfile ports: - 8010:80 restart: always backend: build: context: ./backend dockerfile: Dockerfile volumes: - /app/backend:/app environment: - CELERY_BROKER_URL=redis://redis:6379/0 command: python manage.py runserver 0.0.0.0:8000 ports: - 8011:8000 restart: always celery-worker: build: context: ./backend dockerfile: Dockerfile volumes: - /app/backend:/app environment: - CELERY_BROKER_URL=redis://redis:6379/0 command: celery -A server worker -l info --pool=solo --concurrency=1 depends_on: - redis - backend restart: always celery-beat: build: context: ./backend dockerfile: Dockerfile volumes: - /app/backend:/app environment: - CELERY_BROKER_URL=redis://redis:6379/0 command: celery -A server beat -l info --scheduler django_celery_beat.schedulers:DatabaseScheduler depends_on: - redis - backend restart: always redis: image: redis:latest ports: - 6379:6379 restart: always mysql: image: mysql:latest environment: - MYSQL_ROOT_PASSWORD=sacfxSql258147@ ports: - 8016:3306 volumes: - ./mysql:/var/lib/mysql restart: always frontend:dockerfile文件: FROM node:16.18.1 WORKDIR /app/frontend COPY package*.json ./ RUN npm install COPY . . RUN npm run build:prod FROM nginx:latest COPY --from=0 /app/frontend/dist/ /usr/share/nginx/html EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]

我想将frontend 也是用volumes,将其映射到/app/frontend目录,在/app/frontend下install以及build,如何实现 docker-compose.yml文件: version: '3' services: frontend: build: context: ./frontend dockerfile: Dockerfile ports: - 8010:80 restart: always backend: build: context: ./backend dockerfile: Dockerfile volumes: - /app/backend:/app environment: - CELERY_BROKER_URL=redis://redis:6379/0 command: python manage.py runserver 0.0.0.0:8000 ports: - 8011:8000 restart: always celery-worker: build: context: ./backend dockerfile: Dockerfile volumes: - /app/backend:/app environment: - CELERY_BROKER_URL=redis://redis:6379/0 command: celery -A server worker -l info --pool=solo --concurrency=1 depends_on: - redis - backend restart: always celery-beat: build: context: ./backend dockerfile: Dockerfile volumes: - /app/backend:/app environment: - CELERY_BROKER_URL=redis://redis:6379/0 command: celery -A server beat -l info --scheduler django_celery_beat.schedulers:DatabaseScheduler depends_on: - redis - backend restart: always redis: image: redis:latest ports: - 6379:6379 restart: always mysql: image: mysql:latest environment: - MYSQL_ROOT_PASSWORD=sacfxSql258147@ ports: - 8016:3306 volumes: - ./mysql:/var/lib/mysql restart: always frontend:dockerfile文件 FROM node:16.18.1 WORKDIR /app/frontend COPY package*.json ./ RUN npm install COPY . . RUN npm run build:prod FROM nginx:latest COPY --from=0 /app/frontend/dist/ /usr/share/nginx/html EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]

最新推荐

recommend-type

vue完成项目后,打包成静态文件的方法

接下来,通过在终端中运行 `npm run build` 命令来打包项目。这将在项目根目录下的 `dist` 目录中生成静态文件,包括 HTML、CSS、JavaScript 和其他资源。这些文件可以直接部署到服务器。 如果你想在本地使用 Node....
recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S