用matlab语言详细的复现文献程序
时间: 2024-12-13 11:25:55 浏览: 3
《基于主从博弈的智能小区代理商定价策略及电动汽车充电管理》代码复现 含参考文献,代码复现和详细代码注释 关键词:电动汽车 负荷
要详细复现文献《基于近端策略优化算法的灾后配电网韧性提升方法》中的程序,需要以下几个步骤:
1. **安装必要的工具箱**:
- MATLAB本身
- Reinforcement Learning Toolbox(用于实现PPO算法)
- Optimization Toolbox(用于求解内层优化模型)
2. **准备数据和模型**:
- 读取IEEE 33节点和IEEE 118节点配电网的数据
- 设置配电网的参数,如发电机参数、负荷参数等
3. **构建内外层优化模型**:
- 内层优化模型:最小化节点电压偏差、负荷损失和发电成本
- 外层优化模型:基于PPO算法的最大化负荷恢复
4. **训练PPO算法**:
- 初始化PPO算法的超参数
- 训练PPO算法,记录训练过程中的奖励值和损失函数
5. **验证和测试**:
- 使用训练好的PPO算法对配电网进行灾后恢复模拟
- 计算并比较不同算法的性能指标,如负荷停电率和负荷失电率
以下是一个详细的MATLAB代码示例,涵盖了上述步骤:
### 1. 安装必要的工具箱
确保已经安装了Reinforcement Learning Toolbox和Optimization Toolbox。
### 2. 准备数据和模型
```matlab
% 读取IEEE 33节点配电网数据
load('ieee33busdata.mat'); % 假设数据文件名为ieee33busdata.mat
% 设置配电网参数
numNodes = length(busData); % 节点数量
numGenerators = length(generatorData); % 发电机数量
numContacts = length(contactData); % 联络线数量
% 初始化状态向量
state = [contactStatus; generatorStatus; loadStatus];
```
### 3. 构建内外层优化模型
#### 内层优化模型
```matlab
function [optimalSolution, objectiveValue] = innerLayerOptimization(state)
% 解析状态向量
contactStatus = state(1:numContacts);
generatorStatus = state(numContacts + 1:numContacts + numGenerators);
loadStatus = state(numContacts + numGenerators + 1:end);
% 定义优化问题
optimizationProblem = optimproblem('ObjectiveSense', 'minimize');
% 定义变量
voltageDeviation = optimvar('voltageDeviation', numNodes, 'LowerBound', 0);
loadLoss = optimvar('loadLoss', numNodes, 'LowerBound', 0);
generationCost = optimvar('generationCost', numGenerators, 'LowerBound', 0);
% 目标函数
omega1 = 0.1;
omega2 = 0.5;
optimizationProblem.Objective = sum(loadLoss) + omega1 * sum(generationCost) + omega2 * sum(voltageDeviation.^2);
% 添加约束条件
% 辐射状网络约束
for l = 1:numContacts
alpha = contactData(l, 1);
beta = contactData(l, 2);
optimizationProblem.Constraints{["radiationConstraint_l" num2str(l)]} = ...
contactStatus(l) * (powerFlow(alpha, beta) + powerFlow(beta, alpha)) == 0;
end
% 线路电压降约束
for l = 1:numContacts
alpha = contactData(l, 1);
beta = contactData(l, 2);
optimizationProblem.Constraints{["voltageDropConstraint_l" num2str(l)]} = ...
abs(voltage(alpha) - voltage(beta) + realPowerFlow(l) * resistance(l) + reactivePowerFlow(l) * reactance(l)) <= (1 - contactStatus(l)) * M;
end
% 功率平衡约束
for i = 1:numNodes
optimizationProblem.Constraints{["powerBalanceConstraint_i" num2str(i)]} = ...
sum(realPowerFlow(incomingLines(i))) - sum(realPowerFlow(outgoingLines(i))) + ...
sum(generatorOutage(generatorConnections(i))) == loadStatus(i) * loadDemand(i);
end
% 线路传输功率约束
for l = 1:numContacts
optimizationProblem.Constraints{["transmissionPowerConstraint_l" num2str(l)]} = ...
realPowerFlowMin(l) <= realPowerFlow(l) <= realPowerFlowMax(l) && ...
reactivePowerFlowMin(l) <= reactivePowerFlow(l) <= reactivePowerFlowMax(l);
end
% 节点电压约束
for i = 1:numNodes
optimizationProblem.Constraints{["voltageConstraint_i" num2str(i)]} = ...
1 - zeta <= voltage(i) <= 1 + zeta;
end
% 发电机出力约束
for j = 1:numGenerators
optimizationProblem.Constraints{["generatorOutputConstraint_j" num2str(j)]} = ...
generatorStatus(j) * generatorOutputMin(j) <= generatorOutage(j) <= generatorStatus(j) * generatorOutputMax(j);
end
% 求解优化问题
options = optimoptions('fmincon', 'Display', 'off');
optimalSolution = solve(optimizationProblem, 'Options', options);
objectiveValue = evaluate(optimizationProblem.Objective, optimalSolution);
end
```
#### 外层优化模型
```matlab
% 创建PPO代理
agent = rlPPOAgent(observationInfo, actionInfo, agentOptions);
% 定义环境
env = createEnvironment();
% 训练PPO代理
trainOpts = rlTrainingOptions(...
'MaxEpisodes', 700,...
'MaxStepsPerEpisode', 8,...
'ScoreAveragingWindowLength', 100,...
'StopOnTermination', true,...
'Verbose', false,...
'Plots', 'training-progress',...
'SaveAgentCriteria', 'BestReward',...
'SaveAgentValue', 50,...
'SaveAgentName', 'ppoAgent',...
'SaveAgentDirectory', './agents');
trainedAgent = train(agent, env, trainOpts);
```
### 4. 训练PPO算法
```matlab
% 训练PPO算法
trainOpts = rlTrainingOptions(...
'MaxEpisodes', 700,...
'MaxStepsPerEpisode', 8,...
'ScoreAveragingWindowLength', 100,...
'StopOnTermination', true,...
'Verbose', false,...
'Plots', 'training-progress',...
'SaveAgentCriteria', 'BestReward',...
'SaveAgentValue', 50,...
'SaveAgentName', 'ppoAgent',...
'SaveAgentDirectory', './agents');
trainedAgent = train(agent, env, trainOpts);
```
### 5. 验证和测试
```matlab
% 使用训练好的PPO代理进行灾后恢复模拟
initialState = [contactStatus; generatorStatus; loadStatus];
simOptions = rlSimulationOptions('MaxSteps', 8);
experience = sim(env, trainedAgent, simOptions);
% 计算性能指标
loadLossRate = calculateLoadLossRate(experience);
loadOutageRate = calculateLoadOutageRate(experience);
disp(['Load Loss Rate: ', num2str(loadLossRate)]);
disp(['Load Outage Rate: ', num2str(loadOutageRate)]);
```
### 辅助函数
```matlab
function loadLossRate = calculateLoadLossRate(experience)
% 计算负荷损失率
totalLoadLoss = sum(experience.Observation.loadLoss);
totalLoad = sum(experience.Observation.loadDemand);
loadLossRate = totalLoadLoss / totalLoad;
end
function loadOutageRate = calculateLoadOutageRate(experience)
% 计算负荷停电率
totalOutages = sum(experience.Observation.loadOutage);
totalSimulations = length(experience.Time);
loadOutageRate = totalOutages / totalSimulations;
end
```
### 注意事项
- 确保数据文件`ieee33busdata.mat`和`ieee118busdata.mat`存在并且格式正确。
- 可能需要根据实际情况调整优化模型中的参数和约束条件。
- 训练PPO算法可能需要较长的时间,建议在高性能计算环境中进行。
通过以上步骤,你可以详细复现文献中的程序,并验证其在灾后配电网韧性提升中的有效性。
阅读全文