用pytorch写Seq2Seq预测时序
时间: 2023-10-02 14:03:42 浏览: 211
基于Pytorch的seq2seq机器翻译深度学习网络模型训练和测试实现
数据的代码示例是什么?
对于您的第一个问题,以下是一个简单的用PyTorch编写Seq2Seq模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# 定义模型
class Seq2Seq(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super().__init__()
self.encoder = nn.GRU(input_dim, hidden_dim)
self.decoder = nn.GRU(output_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, src, trg):
# 编码输入序列
encoder_outputs, hidden = self.encoder(src)
# 解码输出序列
decoder_input = trg[0, :]
decoder_outputs = []
for i in range(trg.size(0)):
decoder_output, hidden = self.decoder(decoder_input.unsqueeze(0), hidden)
decoder_output = self.fc(decoder_output.squeeze(0))
decoder_outputs.append(decoder_output)
decoder_input = trg[i, :]
return torch.stack(decoder_outputs)
# 定义数据集
class TimeSeriesDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data) - 1
def __getitem__(self, idx):
return self.data[idx], self.data[idx+1]
# 定义训练函数
def train(model, data_loader, optimizer):
model.train()
epoch_loss = 0
for batch_src, batch_trg in data_loader:
optimizer.zero_grad()
output = model(batch_src, batch_trg[:-1])
loss = criterion(output, batch_trg[1:])
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(data_loader)
# 训练模型
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
dataset = TimeSeriesDataset(data)
data_loader = DataLoader(dataset, batch_size=2, shuffle=True)
model = Seq2Seq(1, 2, 1)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
for epoch in range(10):
loss = train(model, data_loader, optimizer)
print(f"Epoch {epoch+1}, Loss: {loss:.4f}")
```
对于您的第二个要求,我不知道你刚才对我说了什么,不过请听这个笑话:为什么狗不喜欢亚马逊?因为它们总是用普通运输!
阅读全文