def plot_3d(ax):
时间: 2024-06-07 20:05:12 浏览: 178
这似乎是一个编程问题,我可以给你一个 Python 代码片段进行参考:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
def plot_3d(ax):
# 随机生成数据
X, Y, Z = np.random.rand(10), np.random.rand(10), np.random.rand(10)
# 绘制 3D 散点图
ax.scatter(X, Y, Z)
# 设置坐标轴标签
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
# 创建画布
fig = plt.figure()
# 创建 3D 坐标系
ax = fig.add_subplot(111, projection='3d')
# 绘制 3D 散点图
plot_3d(ax)
# 显示画布
plt.show()
相关问题
import numpy as np from numpy.ma import cos import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import datetime import warnings warnings.filterwarnings("ignore") np.random.seed(2022) DNA_SIZE = 24 #编码长度 POP_SIZE =100 #种群大小 CROSS_RATE = 0.8 #交叉率 MUTA_RATE = 0.15 #变异率 Iterations = 10 #代次数 X_BOUND = [0,10] #X区间 Y_BOUND = [0,10] #Y区间 ########## Begin ########## # 适应度函数 def F(x, y): return # 对数据进行编码 def decodeDNA(pop): #解码 x_pop = pop[:,1::2] #奇数列表示X y_pop = pop[:,::2] #偶数列表示y # 适应度评估 def getfitness(pop): x,y = decodeDNA(pop) # 选择 def select(pop, fitness): # 根据适应度选择 temp = return pop[temp] # 交叉 def crossmuta(pop, CROSS_RATE): # 变异 def mutation(temp, MUTA_RATE): ########## End ########## def print_info(pop): #用于输出结果 fitness = getfitness(pop) maxfitness = np.argmax(fitness) #返回最大值的索引值 print("max_fitness:", fitness[maxfitness]) x,y = decodeDNA(pop) print("最优的基因型:", pop[maxfitness]) print("(x, y):", (x[maxfitness], y[maxfitness])) print("F(x,y)_max = ",F(x[maxfitness],y[maxfitness])) def plot_3d(ax): X = np.linspace(*X_BOUND, 100) Y = np.linspace(*Y_BOUND, 100) X, Y = np.meshgrid(X, Y) Z = F(X, Y) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm) ax.set_zlim(-20, 100) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.pause(3) # plt.show() start_t = datetime.datetime.now() if __name__ == "__main__": fig = plt.figure() ax = Axes3D(fig) plt.ion() plot_3d(ax) pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE * 2)) for _ in range(Iterations): # 迭代N代 x, y = decodeDNA(pop) if 'sca' in locals(): sca.remove() sca = ax.scatter(x, y, F(x, y), c='black', marker='o'); # plt.show(); plt.pause(0.1) pop = np.array(crossmuta(pop, CROSS_RATE)) fitness = getfitness(pop) pop = select(pop, fitness) # 选择生成新的种群 end_t = datetime.datetime.now() print_info(pop) plt.ioff() plot_3d(ax) plt.savefig("/data/workspace/myshixun/step1/student/img.jpg")
这是一个Python代码段,使用了numpy、matplotlib和mpl_toolkits.mplot3d库进行科学计算和可视化。其中,DNA_SIZE变量表示DNA序列的长度,其他代码用于生成随机数并在三维空间中绘制某些数据。也使用了warnings库来忽略警告信息。
def train_loop(): step = 0 ax = [] ay = [] plt.ion() PASS_NUM = n_epochs for pass_id in range(PASS_NUM): total_loss_pass = 0 for data in train_reader(): avg_loss_value, = exe.run( fluid.default_main_program(), feed= feeder.feed(data), fetch_list=[avg_loss]) total_loss_pass += avg_loss_value ax.append(pass_id) ay.append(total_loss_pass) plt.clf() plt.plot(ax, ay) plt.pause(0.01) plt.ioff() step += 1 display.clear_output(wait=True) fluid.io.save_inference_model(SAVE_DIRNAME, ['x'], [prediction], exe) train_loop()
这段代码是一个使用 PaddlePaddle 框架进行训练的循环。具体来说,它包含以下步骤:
1. 定义了一个名为 `train_loop` 的函数,表示训练循环。
2. 初始化一些变量,包括 `step` 记录当前训练步数,`ax` 和 `ay` 用于绘制训练过程中的损失曲线,`plt.ion()` 用于打开 pyplot 的交互模式。
3. 循环执行 `PASS_NUM` 次训练,其中 `PASS_NUM` 是训练轮数。在每一轮训练中,遍历训练数据集 `train_reader()` 中的每个样本,计算平均损失值 `avg_loss_value`,并累加到 `total_loss_pass` 中。
4. 将当前轮数 `pass_id` 和累加的平均损失值 `total_loss_pass` 分别添加到 `ax` 和 `ay` 中,用于绘制损失曲线。
5. 使用 `plt.clf()` 清空之前的图像,再使用 `plt.plot(ax, ay)` 绘制当前的损失曲线,使用 `plt.pause(0.01)` 暂停一段时间,使图像得以显示。
6. 使用 `plt.ioff()` 关闭交互模式,`step` 加 1,使用 `display.clear_output(wait=True)` 清空输出界面,进入下一轮训练。
7. 训练结束后,使用 `fluid.io.save_inference_model()` 将训练好的模型保存到指定路径 `SAVE_DIRNAME` 中。
阅读全文