c语言计算曲线

时间: 2023-07-13 16:14:31 浏览: 90
计算曲线可以使用数学库来实现,比如使用math.h库中的sin()函数来计算正弦曲线。下面是一个简单的C语言程序,计算正弦曲线上的点的坐标: ``` #include <stdio.h> #include <math.h> int main() { int i; double x, y; for (i = 0; i < 360; i++) { x = i * M_PI / 180.0; // 将角度转换为弧度 y = sin(x); // 计算正弦值 printf("%d, %f, %f\n", i, x, y); // 输出点的坐标 } return 0; } ``` 在程序中,我们使用for循环遍历0到360度的角度,并将角度转换为弧度后,使用sin()函数计算出曲线上每个点的y坐标。最后,我们将点的坐标输出到控制台上。
相关问题

C语言Bezier曲线拼接编程

C语言实现Bezier曲线的拼接,可以采用类似于Python的方法,使用数组存储控制点坐标,并且编写计算Bezier曲线上点的函数和拼接两条Bezier曲线的函数。具体实现步骤如下: 1. 定义计算Bezier曲线上点的函数,输入为控制点坐标和参数t,输出为Bezier曲线上的点坐标。函数实现可以采用递归的方式,参考如下代码: ```c void bezier_point(double t, double *P0, double *P1, double *P2, double *Q) { double Q1[2], Q2[2]; // 计算一阶Bezier曲线上的点 Q1[0] = (1-t)*P0[0] + t*P1[0]; Q1[1] = (1-t)*P0[1] + t*P1[1]; Q2[0] = (1-t)*P1[0] + t*P2[0]; Q2[1] = (1-t)*P1[1] + t*P2[1]; // 计算二阶Bezier曲线上的点 Q[0] = (1-t)*Q1[0] + t*Q2[0]; Q[1] = (1-t)*Q1[1] + t*Q2[1]; } ``` 2. 定义拼接两条Bezier曲线的函数,输入为两条Bezier曲线的控制点坐标和一个指向存储拼接结果的数组的指针,输出为拼接后的Bezier曲线上的点坐标。函数实现可以参考如下代码: ```c void bezier_concat(double *P0, double *P1, double *P2, double *P3, double *P4, double *Q) { double V[2], P1_new[2], P3_new[2], P[5][2]; int i; // 计算两条曲线之间的向量 V[0] = P2[0] - P3[0]; V[1] = P2[1] - P3[1]; // 将第二条曲线的控制点沿向量V平移 P1_new[0] = P1[0] + V[0]; P1_new[1] = P1[1] + V[1]; P3_new[0] = P3[0] + V[0]; P3_new[1] = P3[1] + V[1]; // 构造新的控制点序列 P[0][0] = P0[0]; P[0][1] = P0[1]; P[1][0] = P1[0]; P[1][1] = P1[1]; P[2][0] = P2[0]; P[2][1] = P2[1]; P[3][0] = P3_new[0]; P[3][1] = P3_new[1]; P[4][0] = P4[0]; P[4][1] = P4[1]; // 计算拼接后的Bezier曲线 for (i = 0; i < 100; i++) { double t = (double)i / 99.0; bezier_point(t, P[0], P[1], P[2], &Q[2*i]); bezier_point(t, P[2], P[3], P[4], &Q[2*i+2]); } } ``` 3. 在主函数中调用bezier_concat函数,将拼接后的Bezier曲线绘制出来。具体实现可以参考如下代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #include <graphics.h> void bezier_point(double t, double *P0, double *P1, double *P2, double *Q) { double Q1[2], Q2[2]; // 计算一阶Bezier曲线上的点 Q1[0] = (1-t)*P0[0] + t*P1[0]; Q1[1] = (1-t)*P0[1] + t*P1[1]; Q2[0] = (1-t)*P1[0] + t*P2[0]; Q2[1] = (1-t)*P1[1] + t*P2[1]; // 计算二阶Bezier曲线上的点 Q[0] = (1-t)*Q1[0] + t*Q2[0]; Q[1] = (1-t)*Q1[1] + t*Q2[1]; } void bezier_concat(double *P0, double *P1, double *P2, double *P3, double *P4, double *Q) { double V[2], P1_new[2], P3_new[2], P[5][2]; int i; // 计算两条曲线之间的向量 V[0] = P2[0] - P3[0]; V[1] = P2[1] - P3[1]; // 将第二条曲线的控制点沿向量V平移 P1_new[0] = P1[0] + V[0]; P1_new[1] = P1[1] + V[1]; P3_new[0] = P3[0] + V[0]; P3_new[1] = P3[1] + V[1]; // 构造新的控制点序列 P[0][0] = P0[0]; P[0][1] = P0[1]; P[1][0] = P1[0]; P[1][1] = P1[1]; P[2][0] = P2[0]; P[2][1] = P2[1]; P[3][0] = P3_new[0]; P[3][1] = P3_new[1]; P[4][0] = P4[0]; P[4][1] = P4[1]; // 计算拼接后的Bezier曲线 for (i = 0; i < 100; i++) { double t = (double)i / 99.0; bezier_point(t, P[0], P[1], P[2], &Q[2*i]); bezier_point(t, P[2], P[3], P[4], &Q[2*i+2]); } } int main() { int gd = DETECT, gm; double P0[2] = {0, 0}; double P1[2] = {100, 100}; double P2[2] = {200, 0}; double P3[2] = {300, 100}; double P4[2] = {400, 0}; double Q[200][2]; int i; initgraph(&gd, &gm, ""); // 绘制原始Bezier曲线 setcolor(YELLOW); for (i = 0; i < 100; i++) { double t = (double)i / 99.0; bezier_point(t, P0, P1, P2, &Q[i][0]); bezier_point(t, P2, P3, P4, &Q[i+100][0]); } for (i = 0; i < 199; i++) { line(Q[i][0], Q[i][1], Q[i+1][0], Q[i+1][1]); } // 拼接两条Bezier曲线 bezier_concat(P0, P1, P2, P3, P4, &Q[0][0]); // 绘制拼接后的Bezier曲线 setcolor(RED); for (i = 0; i < 199; i++) { line(Q[i][0], Q[i][1], Q[i+1][0], Q[i+1][1]); } getch(); closegraph(); return 0; } ``` 该代码可以在图形界面中绘制出原始Bezier曲线和拼接后的Bezier曲线。

c语言计算道路设计中的竖曲线要素

道路设计中的竖曲线通常由以下要素组成: 1. 高点:竖曲线的最高点,也称为凸点或山顶点,通常在两个相对坡度较大的坡之间。高点的高程由设计要求决定。 2. 低点:竖曲线的最低点,也称为谷底点,通常在两个相对坡度较小的坡之间。低点的高程由设计要求决定。 3. 坡度:竖曲线的两侧坡度不同,通常坡度较大的一侧称为陡坡,坡度较小的一侧称为缓坡。坡度由设计要求决定。 4. 曲线长度:竖曲线的长度由设计要求决定,通常根据车速、坡度等因素进行综合考虑。 在C语言中,可以使用结构体来表示竖曲线要素,具体实现如下: ``` struct VerticalCurve { double high_point; // 高点高程 double low_point; // 低点高程 double steep_slope; // 陡坡坡度 double gentle_slope; // 缓坡坡度 double length; // 曲线长度 }; ``` 使用该结构体,我们可以方便地表示和计算竖曲线要素,并进行其他相关处理。

相关推荐

最新推荐

recommend-type

C语言绘制余弦、正弦曲线

首先,C语言绘制余弦曲线的代码使用了反余弦函数acos计算坐标(x,y)的对应关系,并利用屏幕的对称性绘制余弦函数图形。该代码使用了两层for循环, outer loop用于绘制纵坐标y,从1到-1,步长为0.1,而inner loop用于...
recommend-type

C语言编写的用最小二乘法进行曲线拟合

"C语言编写的用最小二乘法进行曲线拟合" 这篇文章主要讲述了使用C语言编写的最小二乘法进行曲线拟合,实现了对曲线的拟合,误差率很低。下面是相关知识点的总结: 1. 最小二乘法:是一种常用的数学方法,用于寻找...
recommend-type

数值计算方法编程作业(C语言版)

真正好用的数值计算编程源码,本人亲自试验,c语言版,经典,吐血编制。 1二分法求解非线性方程 牛顿法求解非线性方程 列主元素消去法求解线性方程 LU分解法求解线性方程 拉格朗日差值多项式; 曲线拟合 辛普生求积...
recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依