SE注意力机制的添加位置
时间: 2023-11-29 12:48:25 浏览: 114
SE注意力机制可以添加在主干的SPPF前一层或将backbone中的C3全部替换。不同的位置可能会产生不同的效果,需要通过数据集反复测试来确定最佳的添加位置。\[2\]
#### 引用[.reference_title]
- *1* *2* *3* [YOLOv5改进系列(1)——添加SE注意力机制](https://blog.csdn.net/weixin_43334693/article/details/130551913)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
yolov添加SE注意力机制
YOLOv3是一种目标检测模型,它使用卷积神经网络来检测图像中的物体。SE( Squeeze-and-Excitation)注意力机制是一种提高模型表现的技术,它可以自适应地学习通道间的重要性,并对这些通道进行加权。
要将SE注意力机制添加到YOLOv3中,需要在YOLOv3的卷积层之后添加SE块。SE块由两个部分组成:压缩部分和激励部分。压缩部分通过全局平均池化将通道压缩到一维,然后通过两个全连接层将其映射到一个较小的向量。激励部分对该向量进行Sigmoid激活,然后将其与卷积特征图相乘,以得到加权特征图。
在YOLOv3中,可以通过以下方式实现SE注意力机制的添加:
1. 定义SE块的压缩和激励部分。
```
import torch.nn as nn
class SEBlock(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(in_channels, in_channels // reduction_ratio)
self.fc2 = nn.Linear(in_channels // reduction_ratio, in_channels)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y).view(b, c, 1, 1)
return x * y
```
2. 在YOLOv3的卷积层之后添加SE块。
```
import torch.nn as nn
class YOLOv3(nn.Module):
def __init__(self, num_classes=80):
super(YOLOv3, self).__init__()
...
self.conv1 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(1024)
self.se1 = SEBlock(1024) # 添加SE块
self.conv2 = nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(512)
self.conv3 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(1024)
self.se2 = SEBlock(1024) # 添加SE块
self.conv4 = nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(1024)
self.se3 = SEBlock(1024) # 添加SE块
self.conv6 = nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0)
self.bn6 = nn.BatchNorm2d(512)
self.conv7 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn7 = nn.BatchNorm2d(1024)
self.se4 = SEBlock(1024) # 添加SE块
self.conv8 = nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0)
self.bn8 = nn.BatchNorm2d(512)
self.conv9 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn9 = nn.BatchNorm2d(1024)
self.se5 = SEBlock(1024) # 添加SE块
...
def forward(self, x):
...
x = self.conv1(x)
x = self.bn1(x)
x = self.se1(x) # 添加SE块
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.se2(x) # 添加SE块
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.se3(x) # 添加SE块
x = self.relu(x)
x = self.conv6(x)
x = self.bn6(x)
x = self.relu(x)
x = self.conv7(x)
x = self.bn7(x)
x = self.se4(x) # 添加SE块
x = self.relu(x)
x = self.conv8(x)
x = self.bn8(x)
x = self.relu(x)
x = self.conv9(x)
x = self.bn9(x)
x = self.se5(x) # 添加SE块
x = self.relu(x)
...
return x
```
这样,我们就成功地将SE注意力机制添加到了YOLOv3中。
yolov5添加SE注意力机制
在 YOLOv5 中添加 SE 注意力机制可以提高模型的性能。SE 注意力机制是一种轻量级的注意力机制,它可以自适应地学习每个通道的重要性,并将其应用于特征图中的每个位置。在 YOLOv5 中,可以通过在 CSPDarknet 中添加 SE 模块来实现 SE 注意力机制。具体来说,可以在 CSPDarknet 的每个卷积层后添加一个 SE 模块,以增强模型的表达能力。
阅读全文