旅行商问题的分支限界算法C语言和伪代码
时间: 2024-12-02 07:29:05 浏览: 81
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题,涉及找到一条经过所有城市恰好一次然后返回起点的最短路径。分支限界算法是一种搜索策略,常用于解决这类NP完全问题。
在C语言中实现旅行商问题的分支限界法,首先需要设计数据结构(如邻接矩阵或向量表示城市),以及函数来计算节点的价值、剪枝等操作。以下是简单的伪代码描述:
```plaintext
// Pseudo-code for Branch-and-Bound algorithm for TSP in C
typedef struct Node {
int city;
int cost; // Cost to reach this city from the previous one
bool visited;
Node* next;
} Node;
Node* create_node(int city) {
// Create a new node with given city and initialize values
}
void tsp_branch_bound(Node** current, int& best_cost) {
if (current->visited == true) { // All cities visited
update_best_path(current, best_cost);
return prune_tree(current); // Prune branches with higher costs
}
for (int i = 0; i < num_cities; i++) {
if (!current->next[i].visited) {
current->next[i].visited = true;
tsp_branch_bound(¤t->next[i], best_cost); // Recursive call
current->next[i].visited = false; // Backtracking
}
}
}
// Function to calculate value of a solution and update best_cost
void update_best_path(Node* path, int& best_cost) {
// Calculate cost of the path and compare with best_cost
if (path->cost + get_city_cost(path->city) < best_cost) {
best_cost = path->cost;
}
}
// Prune branches where lower bound exceeds current best cost
bool prune_tree(Node* node) {
// Calculate lower bound and prune if it's worse than best_cost
if (lower_bound(node) > best_cost) {
return true;
}
return false;
}
```
阅读全文