分支限界法求解旅行商,C语言代码,用伪代码对算法进行描述
时间: 2024-11-13 09:20:19 浏览: 27
cpp代码-分支限界法求解0-1背包问题
分支限界法是一种用于解决组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)的有效算法。它通过系统地生成并剪枝搜索树来寻找最优解决方案。以下是旅行商问题的简单分支限界算法的伪代码描述:
```plaintext
// Pseudocode for Branch and Bound algorithm for TSP
function tsp_bracket_bound(city_list, current_city, best_distance):
if current_city == last_city: // base case: all cities visited
return best_distance
unvisited_cities = city_list - {current_city} // remaining cities to visit
best_distance_so_far = infinity // initialize with a large value
open_nodes = PriorityQueue() // contains nodes to explore
open_nodes.enqueue((0, [current_city], current_city)) // start from current city
while open_nodes is not empty:
distance, path, current_city = open_nodes.dequeue()
if distance + distance_to_next_city(current_city, next_city) < best_distance_so_far:
best_distance_so_far = distance
new_path = path + [next_city] // add the next city to the path
open_nodes.enqueue((distance + distance_to_next_city(next_city, unvisited_cities[0]), new_path, unvisited_cities[0]))
if distance >= best_distance:
break // prune the branch if it cannot improve the solution
return best_distance_so_far
// Distance function (assuming euclidean distance)
function distance_to_next_city(city1, city2):
// Calculate distance between two cities here
main():
city_list = ... // list of cities
best_tour_length = tsp_bracket_bound(city_list, city_list[0], 0)
print("Best tour length:", best_tour_length)
```
阅读全文