门控轴向自注意力机制代码
时间: 2023-10-18 07:04:56 浏览: 151
你可以使用以下代码实现门控轴向自注意力机制(Gated Axial Self-Attention):
```python
import torch
import torch.nn as nn
class GatedAxialSelfAttention(nn.Module):
def __init__(self, dim, max_length):
super(GatedAxialSelfAttention, self).__init__()
self.dim = dim
self.max_length = max_length
# 定义参数矩阵
self.W_q = nn.Linear(dim, dim, bias=False)
self.W_k = nn.Linear(dim, dim, bias=False)
self.W_v = nn.Linear(dim, dim, bias=False)
self.W_g = nn.Linear(dim, dim, bias=False)
self.W_o = nn.Linear(dim, dim, bias=False)
def forward(self, x):
batch_size, seq_length, _ = x.size()
q = self.W_q(x) # (batch_size, seq_length, dim)
k = self.W_k(x) # (batch_size, seq_length, dim)
v = self.W_v(x) # (batch_size, seq_length, dim)
# 水平方向的自注意力
attention_h = torch.matmul(q.transpose(1, 2), k.transpose(1, 2).contiguous()) # (batch_size, dim, seq_length)
attention_h = attention_h.softmax(dim=-1)
# 竖直方向的自注意力
attention_v = torch.matmul(k.transpose(1, 2).contiguous(), q.transpose(1, 2)) # (batch_size, seq_length, seq_length)
attention_v = attention_v.softmax(dim=-1)
# 门控机制
g_h = self.W_g(attention_h.transpose(1, 2).contiguous()) # (batch_size, seq_length, dim)
g_v = self.W_g(attention_v) # (batch_size, seq_length, dim)
# 融合水平和竖直的注意力
combined_attention = attention_h.transpose(1, 2).contiguous() * g_h + attention_v * g_v
# 输出
output = torch.matmul(combined_attention, v.transpose(1, 2)) # (batch_size, seq_length, dim)
output = self.W_o(output)
return output
# 使用示例
dim = 256
max_length = 100
batch_size = 32
seq_length = 50
input_data = torch.randn(batch_size, seq_length, dim)
attention = GatedAxialSelfAttention(dim, max_length)
output = attention(input_data)
print(output.size())
```
这个代码实现了一个门控轴向自注意力机制的模块,输入是一个三维张量 `(batch_size, seq_length, dim)`,其中 `batch_size` 是批量大小,`seq_length` 是序列长度,`dim` 是特征维度。模块将输入通过门控轴向自注意力机制进行处理,并返回输出 `(batch_size, seq_length, dim)`。
阅读全文