基于卷积神经网络的目标检测算法概述
时间: 2023-10-13 16:05:39 浏览: 212
基于卷积神经网络的目标检测算法可以分为两类:一类是基于单阶段检测的算法,另一类是基于两阶段检测的算法。
基于单阶段检测的算法通常包括以下几个部分:输入图像经过卷积神经网络提取特征,然后使用回归器和分类器对目标位置和类别进行预测。其中,回归器用于预测目标的位置和大小,分类器用于预测目标的类别。常见的单阶段检测算法有YOLO、SSD、RetinaNet等。
基于两阶段检测的算法则包括以下几个部分:第一阶段使用卷积神经网络对输入图像进行特征提取,然后使用候选框生成器生成一系列候选框。第二阶段则使用分类器和回归器对候选框进行分类和位置预测。通常会使用一些先进的技术,如RPN、Fast R-CNN等来提高检测的精度和速度。常见的两阶段检测算法有Faster R-CNN、Mask R-CNN等。
基于卷积神经网络的目标检测算法在处理复杂场景中的目标检测问题上表现出色,成为目标检测领域的主流算法之一。
阅读全文