c语言如何基于数学形态学的边缘检测算法的实现代码

时间: 2024-06-12 17:08:04 浏览: 15
以下是基于数学形态学的边缘检测算法的C语言实现代码: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #define ROWS 256 #define COLS 256 int img[ROWS][COLS], edge[ROWS][COLS], dilated[ROWS][COLS], eroded[ROWS][COLS]; int main() { FILE *fp; char *filename = "lena.raw"; int i, j, k, l, m, n, max_intensity = 0; // 读取图像 if ((fp = fopen(filename, "rb")) == NULL) { printf("Error: Cannot open file %s\n", filename); return 1; } fread(img, sizeof(unsigned char), ROWS * COLS, fp); fclose(fp); // 计算梯度 for (i = 1; i < ROWS - 1; i++) { for (j = 1; j < COLS - 1; j++) { int gx = img[i + 1][j] - img[i - 1][j]; int gy = img[i][j + 1] - img[i][j - 1]; edge[i][j] = sqrt(gx * gx + gy * gy); if (edge[i][j] > max_intensity) max_intensity = edge[i][j]; } } // 归一化 for (i = 0; i < ROWS; i++) { for (j = 0; j < COLS; j++) { edge[i][j] = (int) (edge[i][j] * 255.0 / max_intensity); } } // 二值化 for (i = 0; i < ROWS; i++) { for (j = 0; j < COLS; j++) { if (edge[i][j] > 128) edge[i][j] = 255; else edge[i][j] = 0; } } // 膨胀 for (i = 0; i < ROWS; i++) { for (j = 0; j < COLS; j++) { int max = 0; for (k = -1; k <= 1; k++) { for (l = -1; l <= 1; l++) { if (i + k >= 0 && i + k < ROWS && j + l >= 0 && j + l < COLS) { if (edge[i + k][j + l] > max) max = edge[i + k][j + l]; } } } dilated[i][j] = max; } } // 腐蚀 for (i = 0; i < ROWS; i++) { for (j = 0; j < COLS; j++) { int min = 255; for (k = -1; k <= 1; k++) { for (l = -1; l <= 1; l++) { if (i + k >= 0 && i + k < ROWS && j + l >= 0 && j + l < COLS) { if (dilated[i + k][j + l] < min) min = dilated[i + k][j + l]; } } } eroded[i][j] = min; } } // 计算边缘 for (i = 0; i < ROWS; i++) { for (j = 0; j < COLS; j++) { edge[i][j] = dilated[i][j] - eroded[i][j]; } } // 输出边缘图像 if ((fp = fopen("edge.raw", "wb")) == NULL) { printf("Error: Cannot open file edge.raw\n"); return 1; } fwrite(edge, sizeof(unsigned char), ROWS * COLS, fp); fclose(fp); return 0; }

相关推荐

最新推荐

recommend-type

基于C语言实现的aes256加密算法示例

总结起来,基于C语言实现的AES256加密算法需要理解并实现以下核心部分: - 结构体`aes256_context`的定义和使用 - 密钥的扩展和存储 - ECB模式的加密和解密函数 - 非线性变换函数`F()`和`FD()` - AES的S盒查找表 - ...
recommend-type

基于C语言实现的迷宫算法示例

本文将对基于C语言实现的迷宫算法进行详细讲解,并提供了实例代码供大家参考。 一、迷宫算法概述 迷宫算法是一种常见的算法问题,旨在寻找从入口到出口的最短路径。该算法可以应用于多种领域,如游戏、robotics、...
recommend-type

C语言字符串快速压缩算法代码

以上就是C语言字符串快速压缩算法的实现细节。这个算法体现了C语言中对字符串的基本操作,包括字符数组的使用、字符串函数(如`strlen`)的调用以及自定义字符串处理逻辑。同时,它也展示了如何处理多种情况和数据...
recommend-type

C语言实现斗地主的核心算法

本文给大家分享的是使用C语言实现的斗地主游戏的核心算法,主要实现了面向对象设计,洗牌、发牌、判断牌型、比较牌的大小、游戏规则等算法。通过这个斗地主小项目的练习,提高了我的面向对象设计能力,加深了对算法...
recommend-type

C语言基于回溯算法解决八皇后问题的方法

主要介绍了C语言基于回溯算法解决八皇后问题的方法,简单描述了八皇后问题,并结合实例形式分析了C语言使用回溯算法解决八皇后问题的相关操作技巧,需要的朋友可以参考下
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。