改成shape后断言正确,但是又报错,找不到索引:i = torch.sigmoid(torch.matmul(x, self.W_i_forward) + torch.matmul(h_forward_new[-1], self.U_i_forward) + self.b_i_forward) IndexError: index -1 is out of bounds for axis 0 with size 0

时间: 2024-03-03 17:51:09 浏览: 21
这个错误的原因是 `h_forward_new` 这个变量的长度为0,因此无法使用索引 -1 来获取最后一个元素。你需要确保在使用 `h_forward_new` 变量之前,它已经被正确地初始化了。另外,你还需要检查代码的逻辑是否正确,比如在某些情况下,`h_forward_new` 可能会为空,这时你需要特判处理。 另外,你可以使用 `print()` 函数来输出 `h_forward_new` 的长度或形状,以便更好地理解代码的执行过程,例如: ```python print("h_forward_new:", h_forward_new.shape) ``` 这样就可以查看 `h_forward_new` 的长度或形状了,从而更好地理解和调试代码。
相关问题

def forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return xdef forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return xdef forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return xdef forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return x

这是一个神经网络的前向传播函数,通常用于对输入数据进行预测或分类。该网络包括两个卷积层和三个全连接层,并使用了sigmoid激活函数和池化操作。具体来说,输入数据x经过conv1和pool1后,再经过conv2和pool2,最后通过多层全连接层生成输出。在全连接层中使用sigmoid激活函数,最后一层没有激活函数。

以下代码存在无法求导反向传播的bug,请你修改:# 反向LSTM input_backward = torch.flip(input, [0]) outputs_backward = [] for t in range(input_backward.size(0)): x = input_backward[t] i = torch.sigmoid(torch.matmul(x, self.W_i_backward) + torch.matmul(h_backward[-1], self.U_i_backward) + self.b_i_backward) f = torch.sigmoid(torch.matmul(x, self.W_f_backward) + torch.matmul(h_backward[-1], self.U_f_backward) + self.b_f_backward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_backward) + torch.matmul(h_backward[-1], self.U_c_backward) + self.b_c_backward) c_backward[-1] = f * c_backward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_backward) + torch.matmul(h_backward[-1], self.U_o_backward) + self.b_o_backward o = torch.sigmoid(o) h_backward[-1] = o * torch.tanh(c_backward[-1]) outputs_backward.append(h_backward[-1]) outputs_backward = torch.flip(torch.stack(outputs_backward), [0])

这段代码看起来没有明显的无法求导反向传播的 bug,但是如果存在问题的话可能是因为某些操作的输入没有进行 requires_grad=True 的设置。可以尝试添加以下代码,保证所有涉及到反向传播的张量都设置了 requires_grad=True: ``` input_backward.requires_grad_() self.W_i_backward.requires_grad_() self.U_i_backward.requires_grad_() self.b_i_backward.requires_grad_() self.W_f_backward.requires_grad_() self.U_f_backward.requires_grad_() self.b_f_backward.requires_grad_() self.W_c_backward.requires_grad_() self.U_c_backward.requires_grad_() self.b_c_backward.requires_grad_() self.W_o_backward.requires_grad_() self.U_o_backward.requires_grad_() self.b_o_backward.requires_grad_() ``` 另外,如果在模型训练时发现该部分无法进行反向传播,可以尝试将该部分的代码放到 `torch.no_grad()` 中,避免该部分的梯度被累加。 ``` with torch.no_grad(): input_backward = torch.flip(input, [0]) outputs_backward = [] for t in range(input_backward.size(0)): x = input_backward[t] i = torch.sigmoid(torch.matmul(x, self.W_i_backward) + torch.matmul(h_backward[-1], self.U_i_backward) + self.b_i_backward) f = torch.sigmoid(torch.matmul(x, self.W_f_backward) + torch.matmul(h_backward[-1], self.U_f_backward) + self.b_f_backward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_backward) + torch.matmul(h_backward[-1], self.U_c_backward) + self.b_c_backward) c_backward[-1] = f * c_backward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_backward) + torch.matmul(h_backward[-1], self.U_o_backward) + self.b_o_backward o = torch.sigmoid(o) h_backward[-1] = o * torch.tanh(c_backward[-1]) outputs_backward.append(h_backward[-1]) outputs_backward = torch.flip(torch.stack(outputs_backward), [0]) ```

相关推荐

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def init(self): super().init() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def init(self, channel, k_size=3): super(ECA_Module, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def init(self): super().init() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x,使最后输出为[16,1,50,50,]。

最新推荐

recommend-type

####这是一篇对python的详细解析

python
recommend-type

菜日常菜日常菜日常菜日常

菜日常菜日常菜日常菜日常
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。